Bone grafts are commonly used in orthopedic and dental surgeries to facilitate bone repair and regeneration. A new type of bone graft, polycaprolactone-infiltrated three dimensionally printed hydroxyapatite (3DP HA/PCL), was previously developed by infiltrating polycaprolactone (PCL) into preformed three-dimensional-printed hydroxyapatite (3DP HA) that was fabricated using binder jetting technology combined with a low-temperature phase transformation process. However, when producing small granules, which are often used for bone grafting, issues of granule agglomeration emerged, complicating the application of this method. This study aimed to develop a fabrication process for 3DP HA/PCL bone graft granules using solution infiltration and liquid agitation. The effects of varying PCL solution concentrations (40% and 50% /) and different agitating liquids (deionized water or DI, N-Methyl-2-Pyrrolidone or NMP, and an NMP-DI mixture) on the properties of the resulting composites were investigated. XRD and FTIR analysis confirmed the coexistence of HA and PCL within the composites. The final PCL content was comparable across all conditions. The contact angles of 3DP HA/PCL were 26.3 and 69.8 degree for 40% and 50% PCL solution, respectively, when using DI, but were zero when using NMP and NMP-DI. The highest compression load resistance and diametral tensile strength were achieved using the 50% PCL solution with DI or the NMP-DI mixture. DI resulted in a dense PCL coating, while NMP and the NMP-DI mixture produced a porous and irregular surface morphology. All samples exhibited a porous internal microstructure due to PCL infiltration into the initial pores of the 3D-printed HA. Biocompatibility tests showed that all samples supported the proliferation of MC3T3-E1 cells, with the greatest OD values observed for the 50% PCL solution with DI or the NMP-DI mixture at each cultured period. Considering the microstructural, mechanical, and biological properties, the 50% PCL solution with the NMP-DI mixture demonstrated overall desirable properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429199 | PMC |
http://dx.doi.org/10.3390/biomedicines12092161 | DOI Listing |
Pancreatology
December 2024
Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Background: Multiple management guidelines for intraductal papillary mucinous neoplasms (IPMNs) have been published to improve risk stratification and resource utilization. This study aims to evaluate trends in endoscopic ultrasound (EUS) use and agreement between cross-sectional imaging and EUS for specific pancreas cystic lesion (PCL) features.
Methods: This retrospective cohort study included consecutive adults undergoing EUS for suspected IPMN detected with cross-sectional imaging (CT/MRCP) between 2013 and 2015 (Cohort 1) and 2018-2020 (Cohort 2).
ACS Appl Mater Interfaces
December 2024
Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
Developing sustainable electronics requires using materials that are either recyclable or biodegradable, without compromising on electrical performance. Here, we introduce a solution-processed biodegradable polymer blend consisting of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) and different mixtures of two biodegradable polymers, polycaprolactone (PCL) and polylactic acid (PLA). We find that controlling the ratio of components enables a reduction in semiconductor polymer loading (∼70:80% reduction) while maintaining or improving field-effect transistor performance.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
City of London Dental School, University of Bolton, London BL3 5AB, UK.
Polymers have become essential in advancing bone tissue engineering, providing adaptable bone healing and regeneration solutions. Their biocompatibility and biodegradability make them ideal candidates for creating scaffolds that mimic the body's natural extracellular matrix (ECM). However, significant challenges remain, including degradation by-products, insufficient mechanical strength, and suboptimal cellular interactions.
View Article and Find Full Text PDFInt J Pharm
December 2024
Catur Dakwah Crane Pharmaceuticals, Sentul Industrial Area, Bogor 16810, Indonesia.
The increasing prevalence of unintended pregnancies, a persistent issue affecting public health and hindering progress towards the Sustainable Development Goals (SDGs), highlights the critical need for innovative contraceptive approaches. While current methods, including hormonal contraceptives such as levonorgestrel (LNG), offer potential solutions, challenges like limited access and inconsistent use persist. This study introduces a new approach with the development of a three-layer microneedle (TIMN) containing LNG designed to provide extended contraceptive efficacy.
View Article and Find Full Text PDFBiomed Mater
December 2024
Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Simulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!