Human exposure to PM2.5 and PM10 has been linked to respiratory and cardiovascular diseases through inflammation activation. The kynurenine pathway is associated with inflammation, and it is necessary to investigate the effects of long-term PM2.5 and PM10 exposure on this pathway. This study aimed to conduct a cross-sectional analysis of long-term PM2.5 and PM10 exposure's impact on the kynurenine pathway using proton NMR spectroscopy (H-NMR). The participants were divided into a low-PM-exposure group (LG; = 98), and a high-PM-exposure group (HG; = 92). The metabolites of tryptophan were determined in blood by H-NMR. Serotonin, cinnabarinic acid, xanthurenic acid, 5-hydroxytryptophan, indoleacetic acid, tryptamine, melatonin, L-tryptophan, 5-hydroxy-L-tryptophol, indoxyl, 2-aminobenzoic acid, 5-HTOL, hydroxykynurenine, L-3-hydroxykynurenine, -formyl kynurenine, 3-hydroxy anthranilic acid, kynurenic acid, and picolinic acid significantly increased ( < 0.05) in the HG group. Conversely, NAD and quinolinic acid significantly decreased in the HG group compared to the LG group. The enzyme activities of indoleamine 2,3-dioxygenase and formamidase significantly decreased, while kynureninase and kynurenine monooxygenase significantly increased. The kynurenine pathway is linked to inflammation and non-communicable diseases. Disruption of the kynurenine pathway from particulate matter might promote diseases. Reducing exposure to the particulate matter is crucial for preventing adverse health effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428296PMC
http://dx.doi.org/10.3390/biomedicines12091947DOI Listing

Publication Analysis

Top Keywords

kynurenine pathway
20
pm25 pm10
16
long-term pm25
12
pm10 exposure
8
acid
8
particulate matter
8
kynurenine
7
pathway
6
group
5
alterations blood
4

Similar Publications

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

Despite the WHO recommendations in favor of breastfeeding, most infants receive infant formulas (IFs), which are complex matrices involving numerous ingredients and processing steps. Our aim was to understand the impact of the quality of the protein ingredient in IFs on gut microbiota and physiology, blood metabolites and brain gene expression. Three IFs were produced using whey proteins (WPs) from cheese whey (IF-A) or ideal whey (IFs-C and -D) and caseins, either in a micellar form (IFs-A and -C) or partly in a non-micellar form (IF-D).

View Article and Find Full Text PDF

Activation of the kynurenine pathway identified in individuals with covert hepatic encephalopathy.

Hepatol Commun

December 2024

Macquarie Medicine School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.

Background: HE is a neuropsychiatric complication of liver disease characterized by systemic elevation in ammonia and proinflammatory cytokines. These neurotoxins cross the blood-brain barrier and cause neuroinflammation, which can activate the kynurenine pathway (KP). This results in dysregulated production of neuroactive KP metabolites, such as quinolinic acid, which is known to cause astrocyte and neuronal death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!