https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=39335415&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3933541520240930
2076-34251492024Sep13Brain sciencesBrain SciContrasting Effects of Oxytocin on MK801-Induced Social and Non-Social Behavior Impairment and Hyperactivity in a Genetic Rat Model of Schizophrenia-Linked Features.92010.3390/brainsci14090920Social withdrawal in rodents is a measure of asociality, an important negative symptom of schizophrenia. The Roman high- (RHA) and low-avoidance (RLA) rat strains have been reported to exhibit differential profiles in schizophrenia-relevant behavioral phenotypes. This investigation was focused on the study of social and non-social behavior of these two rat strains following acute administration of dizocilpine (MK801, an NMDA receptor antagonist), a pharmacological model of schizophrenia-like features used to produce asociality and hyperactivity. Also, since oxytocin (OXT) has been proposed as a natural antipsychotic and a potential adjunctive therapy for social deficits in schizophrenia, we have evaluated the effects of OXT administration and its ability to reverse the MK801-impairing effects on social and non-social behavior and MK801-induced hyperactivity. MK801 administration produced hyperlocomotion and a decrease in social and non-social behavior in both rat strains, but these drug effects were clearly more marked in RHA rats. OXT (0.04 mg/kg and 0.2 mg/kg) attenuated MK801-induced hyperlocomotion in both rat strains, although this effect was more marked in RHA rats. The MK801-decreasing effect on exploration of the "social hole" was moderately but significantly attenuated only in RLA rats. This study is the first to demonstrate the differential effects of OXT on MK801-induced impairments in the two Roman rat strains, providing some support for the potential therapeutic effects of OXT against schizophrenia-like symptoms, including both a positive-like symptom (i.e., MK801-induced hyperlocomotion) and a negative-like symptom (i.e., MK801 decrease in social behavior), while highlighting the importance of the genetic background (i.e., the rat strain) in influencing the effects of both MK801 and oxytocin.Sampedro-VianaDanielDMedical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.CañeteToniT0000-0002-8950-8120Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.Ancil-GascónPaulaPMedical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.CisciSoniaSDepartment of Life and Environmental Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, 09042 Cagliari, Italy.TobeñaAdolfA0000-0001-6137-0660Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.Fernández-TeruelAlbertoAMedical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.engPID2020-114697GB-I00Government of Spain2021-SGR-00557Departament de Recerca i UniversitatsJournal Article20240913
SwitzerlandBrain Sci1015986462076-3425MK801NMDA receptor antagonistRHA and RLA ratshyperactivityoxytocinschizophreniasocial interactionThe authors declare no conflict of interest.
20246192024823202491020249282246202492822452024928152024913epublish39335415PMC1143056510.3390/brainsci14090920brainsci14090920Binder J., Albus M., Hubmann W., Scherer J., Sobizack N., Franz U., Mohr F., Hecht S. Neuropsychological impairment and psychopathology in first-episode schizophrenic patients related to the early course of illness. Eur. Arch. Psychiatry Clin. Neurosci. 1998;248:70–77. doi: 10.1007/s004060050020.10.1007/s0040600500209684915Cullen K., Guimaraes A., Wozniak J., Anjum A., Schulz S.C., White T. Trajectories of social withdrawal and cognitive decline in the schizophrenia prodrome. Clin. Schizophr. Relat. Psychoses. 2011;4:229–238. doi: 10.3371/CSRP.4.4.3.10.3371/CSRP.4.4.3PMC586242321177240Khan R.S., Sommer I.E., Murray R.M., Meyer-Lindenberg A., Weinberg D.R., Cannon T.D., O’Donovan M., Correl C.U., Kane J.M., van Os J.I.T. Schizophrenia. Nat. Rev. Dis. Prim. 2015;1:15067. doi: 10.1038/nrdp.2015.67.10.1038/nrdp.2015.6727189524Marder S.R., Cannon T.D. Schizophrenia. N. Engl. J. Med. 2019;381:1753–1761. doi: 10.1056/NEJMra1808803.10.1056/NEJMra180880331665579Marder S.R., Galderisi S. The current conceptualization of negative symptoms in schizophrenia. World Psychiatry. 2017;16:14–24. doi: 10.1002/wps.20385.10.1002/wps.20385PMC526950728127915Mitra S., Mahintamani T., Kavoor A., Nizamie S.H. Negative symptoms in schizophrenia. Ind. Psychiatry J. 2016;25:135. doi: 10.4103/ipj.ipj_30_15.10.4103/ipj.ipj_30_15PMC547908528659691McCutcheon R.A., Reis Marques T., Howes O.D. Schizophrenia-An Overview. JAMA Psychiatry. 2020;77:201–210. doi: 10.1001/jamapsychiatry.2019.3360.10.1001/jamapsychiatry.2019.336031664453Simpson E.H., Kellendonk C., Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010;65:585–596. doi: 10.1016/j.neuron.2010.02.014.10.1016/j.neuron.2010.02.014PMC492985920223196Rung J.P., Carlsson A., Markinhuhta K.R., Carlsson M.L. (+)-MK-801 induced social withdrawal in rats: A model for negative symptoms of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2005;29:827–832. doi: 10.1016/j.pnpbp.2005.03.004.10.1016/j.pnpbp.2005.03.00415916843Rung J.P., Carlsson A., Rydén Markinhuhta K., Carlsson M.L. The dopaminergic stabilizers (À)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats. Biol. Psychiatry. 2005;29:833–839. doi: 10.1016/j.pnpbp.2005.03.003.10.1016/j.pnpbp.2005.03.00315913873Neill J.C., Barnes S., Cook S., Grayson B., Idris N.F., McLean S.L., Snigdha S., Rajagopal L., Harte M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: Focus on NMDA receptor antagonism. Pharmacol. Ther. 2010;128:419–432. doi: 10.1016/j.pharmthera.2010.07.004.10.1016/j.pharmthera.2010.07.00420705091Deiana S., Watanabe A., Yamasaki Y., Amada N., Kikuchi T., Stott C., Riedel G. MK-801-induced deficits in social recognition in rats: Reversal by aripiprazole, but not olanzapine, risperidone, or cannabidiol. Behav. Pharmacol. 2015;26:748–765. doi: 10.1097/FBP.0000000000000178.10.1097/FBP.000000000000017826287433Uno Y., Coyle J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 2019;73:204–215. doi: 10.1111/pcn.12823.10.1111/pcn.1282330666759Vales K., Holubova K. Minireview: Animal model of schizophrenia from the perspective of behavioral pharmacology: Effect of treatment on cognitive functions. Neurosci. Lett. 2021;761:136098. doi: 10.1016/j.neulet.2021.136098.10.1016/j.neulet.2021.13609834224793Gururajan A., Taylor D.A., Malone D.T. Current pharmacological models of social withdrawal in rats. Behav. Pharmacol. 2010;21:690–709. doi: 10.1097/FBP.0b013e32833fa7df.10.1097/FBP.0b013e32833fa7df20847646Neill J.C., Harte M.K., Haddad P.M., Lydall E.S., Dwyer D.M. Acute and chronic effects of NMDA receptor antagonists in rodents, relevance to negative symptoms of schizophrenia: A translational link to humans. Eur. Neuropsychopharmacol. 2014;24:822–835. doi: 10.1016/j.euroneuro.2013.09.011.10.1016/j.euroneuro.2013.09.01124287012Winship I.R., Dursun S.M., Baker G.B., Balista P.A., Kandratavicius L., Maia-de-Oliveira J.P., Hallak J., Howland J.G. An overview of animal models related to schizophrenia. Can. J. Psychiatry. 2019;64:5–17. doi: 10.1177/0706743718773728.10.1177/0706743718773728PMC636413929742910Abdul-Monim Z., Reynolds G.P., Neill J.C. The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J. Psychopharmacol. 2003;17:57–65. doi: 10.1177/0269881103017001700.10.1177/026988110301700170012680740Gururajan A., Taylor D.A., Malone D.T. Cannabidiol and clozapine reverse MK-801-induced deficits in social interaction and hyperactivity in Sprague–Dawley rats. J. Psychopharmacol. 2012;26:1317–1332. doi: 10.1177/0269881112441865.10.1177/026988111244186522495620MacDonald K., Feifel D. Oxytocin in schizophrenia: A review of evidence for its therapeutic effects. Acta Neuropsychiatr. 2012;24:130–146. doi: 10.1111/j.1601-5215.2011.00634.x.10.1111/j.1601-5215.2011.00634.xPMC337806122736892Feifel D., Shilling P.D., Hillman J., Maisel M., Winfield J., Melendez G. Peripherally administered oxytocin modulates latent inhibition in a manner consistent with antipsychotic drugs. Behav. Brain Res. 2015;278:424–428. doi: 10.1016/j.bbr.2014.10.023.10.1016/j.bbr.2014.10.023PMC438237925447298Shilling P.D., Feifel D. Potential of oxytocin in the treatment of schizophrenia. CNS Drugs. 2016;30:193–208. doi: 10.1007/s40263-016-0315-x.10.1007/s40263-016-0315-xPMC545811326895254Ettinger U., Hurlemann R., Chan R.C.K. Oxytocin and Schizophrenia Spectrum Disorders. Curr. Top. Behav. Neurosci. 2018;35:515–527. doi: 10.1007/7854_2017_27.10.1007/7854_2017_2728864974Kohli S., King M.V., Williams S., Edwards A., Ballard T.M., Steward L.J., Alberati D., Fone K.C.F. Oxytocin attenuates phencyclidine hyperactivity and increases social interaction and nucleus accumben dopamine release in rats. Neuropsychopharmacology. 2019;44:295–305. doi: 10.1038/s41386-018-0171-0.10.1038/s41386-018-0171-0PMC630053030120410Goh K.K., Chen C.H., Lane H.Y. Oxytocin in schizophrenia: Pathophysiology and implications for future treatment. Int. J. Mol. Sci. 2021;22:2146. doi: 10.3390/ijms22042146.10.3390/ijms22042146PMC792634933670047Zimmermann F.F., Gaspary K.V., Siebel A.M., Bonan C.D. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav. Brain Res. 2016;311:368–374. doi: 10.1016/j.bbr.2016.05.059.10.1016/j.bbr.2016.05.05927247142Lee P.R., Brady D.L., Shapiro R.A., Dorsa D.M., Koenig J.I. Social interaction deficits caused by chronic phencyclidine administration are reversed by oxytocin. Neuropsychopharmacology. 2005;30:1883–1894. doi: 10.1038/sj.npp.1300722.10.1038/sj.npp.130072215798779Cochran D.M., Fallon D., Hill M., Frazier J.A. The role of oxytocin in psychiatric disorders: A review of biological and therapeutic research findings. Harv. Rev. Psychiatry. 2013;21:219–247. doi: 10.1097/HRP.0b013e3182a75b7d.10.1097/HRP.0b013e3182a75b7dPMC412007024651556Feifel D., MacDonald K., Nguyen A., Cobb P., Warlan H., Galangue B., Minassian A., Becker O., Cooper J., Perry W., et al. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry. 2010;68:678–680. doi: 10.1016/j.biopsych.2010.04.039.10.1016/j.biopsych.2010.04.03920615494Fischer-Shofty M., Brüne M., Ebert A., Shefet D., Levkovitz Y., Shamay-Tsoory S.G. Improving social perception in schizophrenia: The role of oxytocin. Schizophr. Res. 2013;146:357–362. doi: 10.1016/j.schres.2013.01.006.10.1016/j.schres.2013.01.00623433504Pedersen C.A., Gibson C.M., Rau S.W., Salimi K., Smedley K.L., Casey R.L., Leserman J., Jarskog L.F., Penn D.L. Intranasal oxytocin reduces psychotic symptoms and improves Theory of mind and social perception in schizophrenia. Schizophr. Res. 2011;132:50–53. doi: 10.1016/j.schres.2011.07.027.10.1016/j.schres.2011.07.02721840177Woolley J.D., Chuang B., Lam O., Lai W., O’Donovan A., Rankin K.P., Mathalon D.H., Vinogradov S. Oxytocin administration enhances controlled social cognition in patients with schizophrenia. Psychoneuroendocrinology. 2014;47:116–125. doi: 10.1016/j.psyneuen.2014.04.024.10.1016/j.psyneuen.2014.04.024PMC428026225001961Fernández-Teruel A., Oliveras I., Cañete T., Rio-Álamos C., Tapias-Espinosa C., Sampedro-Viana D., Sánchez-González A., Sanna F., Torrubia R., González-Maeso J., et al. Neurobehavioral and neurodevelopmental profiles of a heuristic genetic model of differential schizophrenia- and addiction-relevant features: The RHA vs. RLA rats. Neurosci. Biobehav. Reviews. 2021;131:597–617. doi: 10.1016/j.neubiorev.2021.09.042.10.1016/j.neubiorev.2021.09.04234571119Giorgi O., Corda M.G., Fernández-Teruel A. A genetic model of impulsivity, vulnerability to drug abuse and schizophrenia-relevant symptoms with translational potential: The Roman high- vs. low-avoidance rats. Front. Behav. Neurosci. 2019;13:145. doi: 10.3389/fnbeh.2019.00145.10.3389/fnbeh.2019.00145PMC662478731333426Oliveras I., Cañete T., Sampedro-Viana D., Río-Álamos C., Tobeña A., Corda M.G., Giorgi O., Fernández-Teruel A. Neurobehavioral profiles of six genetically-based rat models of schizophrenia related symptoms. Curr. Neuropharmacol. 2023;21:1934–1952. doi: 10.2174/1570159X21666230221093644.10.2174/1570159X21666230221093644PMC1051452436809938Tapias-Espinosa C., Río-Álamos C., Sampedro-Viana D., Gerbolés C., Oliveras I., Sánchez-González A., Tobeña A., Fernández-Teruel A. Increased exploratory activity in rats with deficient sensorimotor gating: A study of schizophrenia-relevant symptoms with genetically heterogeneous NIH-HS and Roman rat strains. Behav. Process. 2018;151:96–103. doi: 10.1016/j.beproc.2018.03.019.10.1016/j.beproc.2018.03.01929567400Esnal A., Sánchez-González A., Río-Álamos C., Oliveras I., Cañete T., Blázquez G., Tobeña A., Fernández-Teruel A. Prepulse inhibition and latent inhibition deficits in Roman high-avoidance vs. Roman low-avoidance rats: Modeling schizophrenia-related features. Physiol. Behavior. 2016;163:267–273. doi: 10.1016/j.physbeh.2016.05.020.10.1016/j.physbeh.2016.05.02027184235Fernández-Teruel A., Blázquez G., Pérez M., Aguilar R., Cañete T., Guitart M., Giménez-Llort L., Tobeña A. Latent inhibition threshold in Roman high-avoidance rats: A psychogenetic model of abnormalities in attentional filter? Actas Españolas Psiquiatr. 2006;34:257–263.16823687Oliveras I., Río-Álamos C., Cañete T., Blázquez G., Martínez-Membrives E., Giorgi O., Corda M.G., Tobeña A., Fernández-Teruel A. Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: Relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front. Behav. Neurosci. 2015;9:213. doi: 10.3389/fnbeh.2015.00213.10.3389/fnbeh.2015.00213PMC453952626347624Oliveras I., Soria-Ruiz O.J., Sampedro-Viana D., Cañete T., Río-Álamos C., Tobeña A., Fernández-Teruel A. Different maturation patterns for sensorimotor gating and startle habituation deficits in male and female RHA vs RLA rats. Behav. Brain Res. 2022;434:114021. doi: 10.1016/j.bbr.2022.114021.10.1016/j.bbr.2022.11402135872331Río-Álamos C., Piludu M.A., Gerbolés C., Barroso D., Oliveras I., Sánchez-González A., Cañete T., Tapias-Espinosa C., Sampedro-Viana D., Torrubia R., et al. Volumetric brain differences between the Roman rat strains: Neonatal handling effects, sensorimotor gating and working memory. Behav. Brain Res. 2019;361:74–85. doi: 10.1016/j.bbr.2018.12.033.10.1016/j.bbr.2018.12.03330576720Tapias-Espinosa C., Río-Álamos C., Sánchez-González A., Oliveras I., Sampedro-Viana D., Castillo-Ruiz M.M., Cañete T., Tobeña A., Fernández-Teruel A. Schizophrenia-like reduced sensorimotor gating in intact inbred and outbred rats is associated with decreased medial prefrontal cortex activity and volume. Neuropsychopharmacology. 2019;44:1975–1984. doi: 10.1038/s41386-019-0392-x.10.1038/s41386-019-0392-xPMC678498830986819del Río C., Oliveras I., Cañete T., Blázquez G., Tobeña A., Fernández-Teruel A. Genetic rat models of schizophrenia-relevant symptoms. World J. Neurosci. 2014;4:261–278. doi: 10.4236/wjns.2014.43030.10.4236/wjns.2014.43030Sampedro-Viana D., Cañete T., Sanna F., Soley B., Giorgi O., Corda M.G., Torrecilla P., Oliveras I., Tapias-Espinosa C., Río-Álamos C., et al. Decreased social interaction in the RHA rat model of schizophrenia-relevant features: Modulation by neonatal handling. Behav. Process. 2021;188:104387. doi: 10.1016/j.beproc.2021.104397.10.1016/j.beproc.2021.10439733887361Oliveras I., Soria-Ruiz O.J., Sampedro-Viana D., Cañete T., Tobeña A., Fernández-Teruel A. Social preference in Roman rats: Age and sex variations relevance for modeling negative schizophrenia-like features. Physiol. Behav. 2022;247:113722. doi: 10.1016/j.physbeh.2022.113722.10.1016/j.physbeh.2022.11372235077728Tapias-Espinosa C., Cañete T., Sampedro-Viana D., Brudek T., Kaihøj A., Oliveras I., Tobeña A., Aznar S., Fernández-Teruel A. Oxytocin attenuates schizophrenia-like reduced sensorimotor gating in outbred and inbred rats in line with strain differences in CD38 gene expression. Physiol. Behav. 2021;240:113547. doi: 10.1016/j.physbeh.2021.113547.10.1016/j.physbeh.2021.11354734364851Sampedro-Viana D., Cañete T., Sanna F., Oliveras I., Lavín V., Torrecilla P., Río-Álamos C., Tapias-Espinosa C., Sánchez-González A., Tobeña A., et al. Atypical antipsychotics attenuate MK801-induced social withdrawal and hyperlocomotion in the RHA rat model of schizophrenia-relevant features. Psychopharmacology. 2023;240:1931–1945. doi: 10.1007/s00213-023-06411-w.10.1007/s00213-023-06411-w37442829Deak T., Arakawa H., Bekkedal M.Y., Panksepp J. Validation of a novel social investigation task that may dissociate social motivation from exploratory activity. Behav. Brain Res. 2009;199:326–333. doi: 10.1016/j.bbr.2008.12.011.10.1016/j.bbr.2008.12.011PMC267868619135092Oliveras I., Sánchez-González A., Sampedro-Viana D., Piludu M.A., Río-Alamos C., Giorgi O., Corda M.G., Aznar S., González-Maeso J., Gerbolés C., et al. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high-(RHA) and low-avoidance (RLA) rats. Psychopharmacology. 2017;234:957–975. doi: 10.1007/s00213-017-4534-8.10.1007/s00213-017-4534-8PMC549238428154892Feifel D., Shilling P.D., MacDonald K. A Review of Oxytocin’s Effects on the Positive, Negative, and Cognitive Domains of Schizophrenia. Biol. Psychiatry. 2016;79:222–233. doi: 10.1016/j.biopsych.2015.07.025.10.1016/j.biopsych.2015.07.025PMC567325526410353Ramos L., Hicks C., Caminer A., Couto K., Narlawar R., Kassiou M., McGregor I.S. MDMA (‘Ecstasy’), oxytocin and vasopressin modulate social preference in rats: A role for handling and oxytocin receptors. Pharmacol. Biochem. Behav. 2016;150–151:115–123. doi: 10.1016/j.pbb.2016.10.002.10.1016/j.pbb.2016.10.00227725273Runyan A., Lengel D., Huh J.W., Barson J.R., Raghupathi R. Intranasal administration of oxytocin attenuates social recognition deficits and increases prefrontal cortex inhibitory postsynaptic currents following traumatic brain injury. eNeuro. 2021;8:ENEURO.0061-21.2021. doi: 10.1523/ENEURO.0061-21.2021.10.1523/ENEURO.0061-21.2021PMC820549534035071Wang S.C., Lin C.C., Tzeng N.S., Tung C.S., Liu Y.P. Effects of oxytocin on prosocial behavior and the associated profiles of oxytocinergic and corticotropin-releasing hormone receptors in a rodent model of posttraumatic stress disorder. J. Biomed. Sci. 2019;26:26. doi: 10.1186/s12929-019-0514-0.10.1186/s12929-019-0514-0PMC642784830898126Feifel D., Reza T. Oxytocin modulates psychotomimetic-induced deficits in sensorimotor gating. Psychopharmacology. 1999;141:93–98. doi: 10.1007/s002130050811.10.1007/s0021300508119952070Qi J., Han W.Y., Yang J.Y., Wang L.H., Dong Y.X., Wang F., Song M., Wu C.F. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by methamphetamine in the mouse brain. Addict. Biol. 2012;17:758–769. doi: 10.1111/j.1369-1600.2012.00439.x.10.1111/j.1369-1600.2012.00439.x22507692Zhou L., Sun W.L., Young A.B., Lee K., McGinty J.F., See R.E. Oxytocin reduces cocaine seeking and reverses chronic cocaine-induced changes in glutamate receptor function. Int. J. Neuropsychopharmacol. 2015;18:pyu009. doi: 10.1093/ijnp/pyu009.10.1093/ijnp/pyu009PMC436886325539504Klein A.B., Ultved L., Adamsen D., Santini M.A., Tobeña A., Fernandez-Teruel A., Flores P., Moreno M., Cardona D., Knudsen G.M., et al. 5-HT2A and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman low- (RLA) and high- (RHA) avoidance rat strains. Neuroscience. 2014;263:36–45. doi: 10.1016/j.neuroscience.2013.12.063.10.1016/j.neuroscience.2013.12.06324412375Fomsgaard L., Moreno J.L., de la Fuente Revenga M., Brudek T., Adamsen D., Rio-Alamos C., Saunders J., Klein A.B., Oliveras I., Cañete T., et al. Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the Roman low- (RLA-I) and high- (RHA-I) avoidance rat strains. Mol. Neurobiol. 2018;55:1998–2012. doi: 10.1007/s12035-017-0457-y.10.1007/s12035-017-0457-yPMC558736728265857Elfving B., Müller H.K., Oliveras I., Østerbøg T.B., Rio-Alamos C., Sanchez-Gonzalez A., Tobeña A., Fernandez-Teruel A., Aznar S. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019;95:109669. doi: 10.1016/j.pnpbp.2019.109669.10.1016/j.pnpbp.2019.10966931228641Sønderstrup M., Batiuk M.Y., Mantas P., Tapias-Espinosa C., Oliveras I., Cañete T., Sampedro-Viana D., Brudek T., Rydbirk R., Khodosevich K., et al. A maturational shift in the frontal cortex synaptic transcriptional landscape underlies schizophrenia-relevant behavioural traits: A congenital rat model. Eur. Neuropsychopharmacol. 2023;74:32–46. doi: 10.1016/j.euroneuro.2023.05.001.10.1016/j.euroneuro.2023.05.00137263043Wood C.M., Nicolas C.S., Choi S.-L., Roman E., Nylander I., Fernández-Teruel A., Kiianmaa K., Bienkowski P., de Jong T.R., Colombo G., et al. Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology. 2017;115:128–138. doi: 10.1016/j.neuropharm.2016.03.020.10.1016/j.neuropharm.2016.03.02026987983Krzystanek M., Pałasz A. NMDA receptor model of antipsychotic drug-induced hypofrontality. Int. J. Mol. Sci. 2019;20:1442. doi: 10.3390/ijms20061442.10.3390/ijms20061442PMC647100530901926