Artificial Intelligence (AI), computer simulations, and virtual reality (VR) are increasingly becoming accessible tools that can be leveraged to implement training protocols and educational resources. Typical assessment tools related to sensory and neural processing associated with task performance in virtual environments often rely on self-reported surveys, unlike electroencephalography (EEG), which is often used to compare the effects of different types of sensory feedback (e.g., auditory, visual, and haptic) in simulation environments in an objective manner. However, it can be challenging to know which aspects of the EEG signal represent the impact of different types of sensory feedback on neural processing. Machine learning approaches offer a promising direction for identifying EEG signal features that differentiate the impact of different types of sensory feedback during simulation training. For the current study, machine learning techniques were applied to differentiate neural circuitry associated with haptic and non-haptic feedback in a simulated drilling task. Nine EEG channels were selected and analyzed, extracting different time-domain, frequency-domain, and nonlinear features, where 360 features were tested (40 features per channel). A feature selection stage identified the most relevant features, including the Hurst exponent of 13-21 Hz, kurtosis of 21-30 Hz, power spectral density of 21-30 Hz, variance of 21-30 Hz, and spectral entropy of 13-21 Hz. Using those five features, trials with haptic feedback were correctly identified from those without haptic feedback with an accuracy exceeding 90%, increasing to 99% when using 10 features. These results show promise for the future application of machine learning approaches to predict the impact of haptic feedback on neural processing during VR protocols involving drilling tasks, which can inform future applications of VR and simulation for occupational skill acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429552 | PMC |
http://dx.doi.org/10.3390/brainsci14090894 | DOI Listing |
Lung Cancer
January 2025
Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).
Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.
J Speech Lang Hear Res
January 2025
Department of Psychology, University of Western Ontario, London, Canada.
Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.
Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.
J Craniofac Surg
October 2024
Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, Italy.
Background: With the use of machine learning algorithms, artificial intelligence (AI) has become a viable diagnostic and treatment tool for oral cancer. AI can assess a variety of information, including histopathology slides and intraoral pictures.
Aim: The purpose of this systematic review is to evaluate the efficacy and accuracy of AI technology in the detection and diagnosis of oral cancer between 2020 and 2024.
Neuroradiol J
January 2025
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFAm J Phys Med Rehabil
December 2024
Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226.
Predicting discharge destination for patients at inpatient rehabilitation facilities is important as it facilitates transitions of care and can improve healthcare resource utilization. This study aims to build on previous studies investigating discharges from inpatient rehabilitation by employing machine learning models to predict discharge disposition to home versus non-home and explore related factors. Fifteen machine learning models were tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!