Betahistine's Neuroprotective Actions against Lipopolysaccharide-Induced Neurotoxicity: Insights from Experimental and Computational Studies.

Brain Sci

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.

Published: August 2024

AI Article Synopsis

  • * In an experiment with rats, pre-treatment with BHTE showed significant improvement in cognitive performance and restoration of brain acetylcholine levels following LPS-induced neurotoxicity, which typically leads to cognitive decline and neuroinflammatory responses.
  • * BHTE not only reduced pro-inflammatory markers and improved mitochondrial function but also demonstrated a strong binding affinity to key enzymes related to neuroinflammation and apoptosis, indicating its potential as a therapeutic option for neurodegenerative diseases.

Article Abstract

Histamine H receptor (HR) antagonists, such as betahistine (BHTE), have shown significant potential in treating central nervous system (CNS) disorders due to their neuroprotective properties. This study investigated BHTE's effects on lipopolysaccharide (LPS)-induced neurotoxicity, which is associated with neuroinflammation and neurodegeneration. Rats were divided into groups and pre-treated with BHTE (5 or 10 mg/kg, p.o.) for 30 days, followed by LPS administration (1 mg/kg, i.p.) for 4 consecutive days to induce neurotoxicity. LPS exposure resulted in cognitive impairment, as evidenced by performance deficits in maze tests, and a significant reduction in brain acetylcholine (ACh) levels. Additionally, LPS led to increased neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Pre-treatment with BHTE effectively counteracted these effects, improving cognitive performance and restoring ACh levels. BHTE significantly reduced LPS-induced increases in pro-inflammatory markers (COX-2, TNF-α, and IL-6) while enhancing anti-inflammatory cytokines (IL-10 and TGF-β1). Furthermore, BHTE improved mitochondrial function by increasing enzyme levels (MRCC-I, II, and IV) and boosted anti-apoptotic (Bcl-2) and antioxidant defenses (GSH and catalase). BHTE also reduced apoptosis markers, including pro-apoptotic protein caspase-3, and oxidative stress marker malondialdehyde (MDA). Molecular modeling studies revealed that BHTE effectively binds to key enzymes involved in neuroinflammation and apoptosis (AChE, COX-2, and caspase-3), with binding free energies between 4 and 5 kcal/mol, interacting with critical residues. These findings underscore BHTE's multifaceted neuroprotective effects against LPS-induced neurotoxicity, offering potential therapeutic avenues for managing neuroinflammation and related neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430358PMC
http://dx.doi.org/10.3390/brainsci14090876DOI Listing

Publication Analysis

Top Keywords

lps-induced neurotoxicity
8
ach levels
8
oxidative stress
8
bhte effectively
8
bhte reduced
8
bhte
7
betahistine's neuroprotective
4
neuroprotective actions
4
actions lipopolysaccharide-induced
4
neurotoxicity
4

Similar Publications

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by memory decline and cognitive impairments. The clinical treatments for AD have numerous adverse effects, hence the exploration of natural products for AD therapy is of significant importance. Protocatechuic acid (PA), a natural phenolic acid, has been shown to possess various pharmacological activities, including anti-inflammatory, antioxidant, and antitumor effects.

View Article and Find Full Text PDF

NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner.

Inflammation

January 2025

Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings.

View Article and Find Full Text PDF

Andrographolide mitigates neurotoxicity induced by lipopolysaccharide or amyloid-β through modulation of miR-222-mediated p62 and NF-κBp65 expression.

Eur J Pharmacol

February 2025

Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, P.R. China. Electronic address:

MicroRNA-222 (miR-222) plays a crucial role in neurodegeneration and is up-regulated in Alzheimer's disease (AD) patients. Andrographolide (Andro) has been reported to have anti-inflammatory and neuroprotective effects, showing potential for treating AD. The relationship between Andro's anti-AD mechanism and the regulation of miR-222 was discussed in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!