Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gait scores are widely used in the genetic evaluation of horses. However, the nature of such measurement may limit genetic progress since there is subjectivity in phenotypic information. This study aimed to assess the application of machine learning techniques in the prediction of breeding values for five visual gait scores in Campolina horses: dissociation, comfort, style, regularity, and development. The dataset contained over 5000 phenotypic records with 107,951 horses (14 generations) in the pedigree. A fixed model was used to estimate least-square solutions for fixed effects and adjusted phenotypes. Variance components and breeding values (EBV) were obtained via a multiple-trait model (MTM). Adjusted phenotypes and fixed effects solutions were used to train machine learning models (using the EBV from MTM as target variable): artificial neural network (ANN), random forest regression (RFR) and support vector regression (SVR). To validate the models, the linear regression method was used. Accuracy was comparable across all models (but it was slightly higher for ANN). The highest bias was observed for ANN, followed by MTM. Dispersion varied according to the trait; it was higher for ANN and the lowest for MTM. Machine learning is a feasible alternative to EBV prediction; however, this method will be slightly biased and over-dispersed for young animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429212 | PMC |
http://dx.doi.org/10.3390/ani14182723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!