Single-Atom Ce-N-C Nanozyme Ameliorates Type 2 Diabetes Mellitus by Improving Glucose Metabolism Disorders and Reducing Oxidative Stress.

Biomolecules

Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Published: September 2024

Type 2 diabetes mellitus (T2DM) as a chronic metabolic disease has become a global public health problem. Insulin resistance (IR) is the main pathogenesis of T2DM. Oxidative stress refers to an imbalance between free radical production and the antioxidant system, causing insulin resistance and contributing to the development of T2DM via several molecular mechanisms. Besides, the reduction in hepatic glycogen synthesis also leads to a decrease in peripheral insulin sensitivity. Thus, reducing oxidative stress and promoting glycogen synthesis are both targets for improving insulin resistance and treating T2DM. The current study aims to investigate the pharmacological effects of single-atom Ce-N-C nanozyme (SACe-N-C) on the improvement of insulin resistance and to elucidate its underlying mechanisms using HFD/STZ-induced C57BL/6J mice and insulin-resistant HepG2 cells. The results indicate that SACe-N-C significantly improves hepatic glycogen synthesis and reduces oxidative stress, as well as pancreatic and liver injury. Specifically, compared to the T2DM model group, fasting blood glucose decreased by 29%, hepatic glycogen synthesis increased by 17.13%, and insulin secretion increased by 18.87%. The sod and GPx in the liver increased by 17.80% and 25.28%, respectively. In terms of mechanism, SACe-N-C modulated glycogen synthesis through the PI3K/AKT/GSK3β signaling pathway and activated the Keap1/Nrf2 pathway to alleviate oxidative stress. Collectively, this study suggests that SACe-N-C has the potential to treat T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430424PMC
http://dx.doi.org/10.3390/biom14091193DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
glycogen synthesis
20
insulin resistance
16
hepatic glycogen
12
single-atom ce-n-c
8
ce-n-c nanozyme
8
type diabetes
8
diabetes mellitus
8
reducing oxidative
8
t2dm
6

Similar Publications

Objective: Serum uric acid (SUA) may play positive roles in diseases associated with oxidative stress, such as osteoporosis (OP). Nevertheless, the specific impact of SUA levels on both bone mineral density (BMD) and the risk of OP remains uncertain. Considering such information crucial for clinicians when making decisions about urate-lowering therapy (ULT), we sought to fill this gap by conducting dose-response meta-analyses.

View Article and Find Full Text PDF

Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Introduction: The common duckweed () is a model organism for investigation of plant physiology, especially stress-related responses. Its two physiological characteristics are of special interest: (1) salt-stressed duckweeds may accumulate starch, a precursor for biofuel; (2) duckweeds are associated with various beneficial (plant-growth promoting, PGP) bacterial strains. In this paper, we analyzed the role of two bacterial strains: D1-104/3 and C31-106/3 in regulation of duckweed's growth and antioxidative responses to salt (10 and 100 mM NaCl) and hypothesized that they alleviate salt-induced oxidative stress.

View Article and Find Full Text PDF

Despite extensive research, determining the optimal level of sunlight exposure for human health remains a challenge, emphasizing the need for ongoing scientific inquiry into this critical aspect of human well-being. This review aims to elucidate how different components of the solar spectrum, particularly near-infrared (NIR) radiation and ultraviolet radiation (UVR) affect human health in diverse ways depending on factors such as time of day and duration of exposure. Sunlight has beneficial effects from the production of melatonin by NIR and vitamin D by UVB.

View Article and Find Full Text PDF

The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!