Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms.

Biomolecules

Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.

Published: September 2024

Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity. To overcome these challenges, a well-established structure-function relationship for AMPs is critical. In the present study, we focused on the well-known examples of melittin and magainin to investigate in detail the initial stages of AMP interaction with lipid membranes at low peptide-to-lipid ratio. By combining the patch-clamp technique with the bioelectrochemical method of intramembrane field compensation, we showed that these peptides interact with the membrane in different ways: melittin inserts deeper into the lipid bilayer than magainin. This difference led to diversity in pore formation. While magainin, after a threshold concentration, formed the well-known toroidal pores, allowing the translocation of the peptide through the membrane, melittin probably induced predominantly pure lipidic pores with a very low rate of peptide translocation. Thus, our results shed light on the early stages of peptide-membrane interactions and suggest new insights into the structure-function relationship of AMPs based on the depth of their membrane insertion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430820PMC
http://dx.doi.org/10.3390/biom14091118DOI Listing

Publication Analysis

Top Keywords

low peptide-to-lipid
8
peptide-to-lipid ratio
8
structure-function relationship
8
relationship amps
8
membrane
4
membrane activity
4
melittin
4
activity melittin
4
melittin magainin-i
4
low
4

Similar Publications

Antimicrobial peptides (AMPs) are believed to be a prominent alternative to the common antibiotics. However, despite decades of research, there are still no good clinical examples of peptide-based antimicrobial drugs for system application. The main reasons are loss of activity in the human body, cytotoxicity, and low selectivity.

View Article and Find Full Text PDF

The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles.

Membranes (Basel)

January 2023

LAQV/REQUIMTE (Laboratório Associado para a Química Verde-Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.

Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios.

View Article and Find Full Text PDF

The spike (S) protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) mediates a critical stage in infection, the fusion between viral and host membranes. The protein is categorized as a class I viral fusion protein and has two distinct cleavage sites that can be activated by proteases. The activation deploys the fusion peptide (FP) for insertion into the target cell membranes.

View Article and Find Full Text PDF

Cooperative antimicrobial action of melittin on lipid membranes: A coarse-grained molecular dynamics study.

Biochim Biophys Acta Biomembr

September 2022

Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan; Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan. Electronic address:

We conducted a series of coarse-grained molecular dynamics (CG-MD) simulations to investigate the complicated actions of melittin, which is an antimicrobial peptide (AMP) derived from honey bee venom, on a lipid membrane. To accurately simulate the AMP action, we developed and used a protein CG model as an extension of the pSPICA force field (FF), which was designed to reproduce several thermodynamic quantities and structural properties. At a low peptide-to-lipid (P/L) ratio (1/102), no defect was detected.

View Article and Find Full Text PDF

Role of Charge in Lipid Vesicle Binding and Vesicle Surface Saturation by Gaduscidin-1 and Gaduscidin-2.

Langmuir

August 2020

Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada.

The histidine-rich antimicrobial peptides Gad-1 and Gad-2, from paralogous genes in cod, provide an opportunity to examine the effect of charge and nonelectrostatic factors on peptide-vesicle interaction and on peptide antimicrobial activity. In this study, the dependence of vesicle ζ-potential on peptide concentration has been used to examine the binding of these peptides to model vesicle surfaces at pH = 5.0, for which the charges of Gad-1 and Gad-2 are +8 and +5, respectively, and at pH = 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!