AI Article Synopsis

  • - The study examines the harmful effects of heavy metal pollution in the Al Marioteya canal in Egypt, highlighting significantly higher levels of metals like cadmium, cobalt, chromium, nickel, and lead compared to acceptable limits set by the WHO, using the creeping water bug as a model organism.
  • - Analysis revealed that the presence of heavy metals led to increased oxidative stress, indicated by lower antioxidant enzyme levels in the bug's midgut and higher levels of damaging compounds, suggesting serious implications for the bug's health and the ecosystem.
  • - Histological examinations showed significant damage in the bug's midgut and related structures, indicating severe pathophysiological effects and potential impacts on local biodiversity due to metal contamination.

Article Abstract

The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug () as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization's (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of , emphasizing our findings. Overall, our findings emphasize the potential use of as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428737PMC
http://dx.doi.org/10.3390/antiox13091039DOI Listing

Publication Analysis

Top Keywords

heavy metals
16
creeping water
12
oxidative stress
12
midgut tissues
12
heavy metal
8
histopathological ultrastructural
8
water bug
8
water
6
heavy
6
midgut
5

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Association between blood manganese and cardiovascular diseases among U.S. adult population.

Sci Rep

December 2024

National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Center for Cardiovascular Diseases, Beijing, 102300, China.

Manganese (Mn) is a known toxicant and an essential trace element, and it plays an important role in various mechanisms in relation to cardiovascular health. However, epidemiological studies of the association between blood Mn and cardiovascular diseases (CVD) among U.S.

View Article and Find Full Text PDF

The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a common cerebrovascular disease characterized by a high incidence, disability rate, and mortality. Epigallocatechin gallate (EGCG), a key catechin compound found in green tea, has received increasing attention for its potential neuroprotective and therapeutic effects in neurological disorders. Studies have indicated that EGCG may influence various signaling pathways and molecular targets, including the inhibition of oxidative stress, reduction of inflammatory responses, suppression of cell apoptosis, regulation of cell survival, and enhancement of autophagy.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!