Interactions between colorectal cancer (CRC) cells and the noncancerous cells in the tumor microenvironment (TME) induce mechanisms for the escape of tumor cells from immune attack. Hepcidin, a peptide that controls immune cell functions, is overproduced by CRC cells. This study aimed to evaluate whether hepcidin acts as a regulator of anti-tumor immunity in CRC. Hepcidin silencing in CRC cells was followed by enhanced TNF-driven caspase-dependent cleavage of GSDM E and death. Mice engrafted with hepcidin-deficient CT26 cells developed fewer and smaller tumors than control mice as a result of the action of tumor-infiltrating CD8+ T lymphocytes and were protected from the development of tumors in a vaccination model and exhibited long-lasting tumor protection. Additionally, hepcidin deficiency enhanced the response of mice bearing CT26-derived tumors to anti-PD-1 therapy. These results suggest that targeting hepcidin in CRC cells enhances the production of TNF thereby triggering a caspase/GSDM E-driven lytic cell death with the downstream effect of boosting a robust immune response against tumor antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437719 | PMC |
http://dx.doi.org/10.1186/s40164-024-00562-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!