Endocytosis as a critical regulator of hematopoietic stem cell fate -implications for hematopoietic stem cell and gene therapy.

Stem Cell Res Ther

Centre for Stem Cell Research (CSCR), A unit of InStem Bengaluru, Christian Medical College campus, Vellore, 632002, Tamil Nadu, India.

Published: September 2024

Hematopoietic stem cells (HSCs) have emerged as one of the most therapeutically significant adult stem cells, paving way for a range of novel curative regimens over decades. HSCs are transplanted, either directly or post restorative genetic engineering in order to repopulate a healthy hematopoietic homeostasis in patients with disorders affecting the blood and immune cells. Despite being an extensively studied system, the maintenance and expansion of functional HSCs ex vivo remains a major bottleneck. The challenge primarily stems from difficulties in reproducing HSC self-renewal divisions and gradual depletion of stemness characters, in vitro. Refining the in vitro culture can be particularly beneficial in the case of cord blood HSCs (CB-HSCs), as inadequate numbers in a single umbilical cord limits its therapeutic potential. In recent years, molecular dissection of HSC stemness has significantly improved in vitro hematopoietic stem and progenitor cells (HSPCs) culture. Despite such significant progress, lacunae exist in fully understanding all the underlying mechanisms and their interplay active in bona fide HSCs, and how it transforms when cells proliferate in culture. A new groundbreaking study titled "MYCT1 controls environmental sensing in human haematopoietic stem cells", published in Nature in June 2024, sheds light on this complex field. Through a series of experiments, including knock-down, overexpression, single-cell RNA sequencing, and transplantation, the study identifies a previously unknown role of the MYC target 1 (MYCT1) protein in HSC maintenance. This protein acts as a crucial regulator of human HSCs, with high expression in primitive HSCs and subsequently downregulated during ex vivo culture. The study reveals that MYCT1 plays a vital role in moderating endocytosis and environmental sensing in HSCs, processes thereby essential for maintaining HSC stemness and function. This commentary will discuss the implications of the new findings for cord blood expansion in cell therapies and HSPC culture for gene therapy applications, providing valuable insights for the field of hematopoietic regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438103PMC
http://dx.doi.org/10.1186/s13287-024-03927-6DOI Listing

Publication Analysis

Top Keywords

hematopoietic stem
16
stem cell
8
gene therapy
8
stem cells
8
hscs
8
cord blood
8
hsc stemness
8
environmental sensing
8
hematopoietic
6
stem
6

Similar Publications

Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.

View Article and Find Full Text PDF

Intra-patient variability in immunosuppressive blood drug concentrations is a potential biomarker in managing organ transplant patients. However, the association between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in preventing graft-versus-host disease remains unknown. In this study, we analyzed the relationship between the time in therapeutic range of tacrolimus blood concentrations and its efficacy in acute graft-versus-host disease prophylaxis in patients undergoing allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Despite progress in healthcare services for individuals living with sickle cell disease (SCD) in Africa, substantial gaps remain in advanced treatments for SCD. To help address this burden, Tanzania has established one of the largest single-centre SCD programmes in the world and developed an advanced therapy programme for SCD focused on patient engagement and advocacy, clinical activities involving exchange blood transfusion (ExBT) and haematopoietic stem cell transplant (HSCT), gene therapy (GT) preparedness, and enabling partnerships. This report describes the programme's genesis, structure and progress achieved.

View Article and Find Full Text PDF

A fatal case of enterovirus A71-induced meningoencephalitis following allogenic hematopoietic stem cell transplantation.

J Infect Chemother

January 2025

Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Enterovirus A71 (EV-A71) is a major pathogen responsible for hand, foot, and mouth disease (HFMD) in infants and children. EV-A71 infection represents an epidemic in the Asia-Pacific region, and can cause serious central nervous system (CNS) infections in immunocompromised patients that can result in paralysis, disability, or death. There have been few reports in the literature concerning EV-A71 CNS infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult patients.

View Article and Find Full Text PDF

Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!