Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429882PMC
http://dx.doi.org/10.1186/s12911-024-02685-yDOI Listing

Publication Analysis

Top Keywords

correction machine
4
machine learning-based
4
learning-based prognostic
4
prognostic model
4
model 30-day
4
30-day mortality
4
mortality prediction
4
prediction sepsis-3
4
correction
1
learning-based
1

Similar Publications

MPEMDA: A Multi-Similarity Integration Approach with Pre-completion and Error Correction for Predicting Microbe-Drug Associations.

Methods

January 2025

School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

Exploring the associations between microbes and drugs offers valuable insights into their underlying mechanisms. Traditional wet lab experiments, while reliable, are often time-consuming and labor-intensive, making computational approaches an attractive alternative. Existing similarity-based machine learning models for predicting microbe-drug associations typically rely on integrated similarities as input, neglecting the unique contributions of individual similarities, which can compromise predictive accuracy.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

The Application of Supervised Machine Learning Algorithms for Image Alignment in Multi-Channel Imaging Systems.

Sensors (Basel)

January 2025

Department of Computer-Integrated Technologies of Device Production, Faculty of Instrumentation Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave., 37, 03056 Kyiv, Ukraine.

This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined.

View Article and Find Full Text PDF

Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.

View Article and Find Full Text PDF

Background: Prehospital emergencies require providers to rapidly identify patients' medical condition and determine treatment needs. We tested whether medics' initial, written impressions of patient condition contain information that can help identify patients who require prehospital lifesaving interventions (LSI) prior to or during transport.

Methods: We analyzed free-text medic impressions of prehospital patients encountered at the scene of an accident or injury, using data from STAT MedEvac air medical transport service from 2012 to 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!