A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study. | LitMetric

Objectives: To develop radiomics models based on multi-sequence MRI from two centers for the preoperative prediction of the WHO/ISUP grade of Clear Cell Renal Cell Carcinoma (ccRCC).

Methods: This retrospective study included 334 ccRCC patients from two centers. Significant clinical factors were identified through univariate and multivariate analyses. MRI sequences included Dynamic contrast-enhanced MRI, axial fat-suppressed T2-weighted imaging, diffusion-weighted imaging, and in-phase/out-of-phase images. Feature selection methods and logistic regression (LR) were used to construct clinical and radiomics models, and a combined model was developed using the Rad-score and significant clinical factors. Additionally, seven classifiers were used to construct the combined model and different folds LR was used to construct the combined model to evaluate its performance. Models were evaluated using receiver operating characteristic (ROC) curves, area under the curve (AUC), and decision curve analysis (DCA). The Delong test compared ROC performance, with p < 0.050 considered significant.

Results: Multivariate analysis identified intra-tumoral vessels as an independent predictor of high-grade ccRCC. In the external validation set, the radiomics model (AUC = 0.834) outperformed the clinical model (AUC = 0.762), with the combined model achieving the highest AUC (0.855) and significantly outperforming the clinical model (p = 0.003). DCA showed that the combined model had a higher net benefit within the 0.04-0.54 risk threshold range than clinical model. Additionally, the combined model constructed using logistic regression has a higher priority compared to other classifiers. Additionally, 10-fold cross-validation with LR for the combined model showed consistent AUC values (0.849-0.856) across different folds.

Conclusion: The radiomics models based on multi-sequence MRI might be a noninvasive and effective tool, demonstrating good efficacy in preoperatively predicting the WHO/ISUP grade of ccRCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438199PMC
http://dx.doi.org/10.1186/s12885-024-12930-2DOI Listing

Publication Analysis

Top Keywords

combined model
12
who/isup grade
8
grade clear
8
clear cell
8
cell renal
8
renal cell
8
cell carcinoma
8
radiomics models
8
clinical factors
8
construct combined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!