A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis. | LitMetric

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Sci Rep

Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, No. 148, Health Care Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.

Published: September 2024

The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA) data using least absolute shrinkage and selection Operator (LASSO), random forest (RF), and support vector machine (SVM) algorithms. Six ML algorithms were employed to construct the diagnostic models, which were evaluated through receiver operating characteristic (ROC) curves, precision-recall curves (PRC), and classification error (CE), and validated on the GSE7670 dataset. Additionally, a lasso cox prognostic model was built on the TCGA-LUAD dataset and externally validated using independent Gene Expression Omnibus datasets (GSE30219, GSE31210, GSE50081, and GSE37745). Single-sample gene set enrichment analysis (ssGSEA) was performed to assess immune cell infiltration in stage I LUAD samples, revealing significant differences in immune cell types. These findings demonstrate a positive correlation between immune infiltration in stage I LUAD and Th2 cells, Tcm cells, and T helper cells, while a negative correlation was observed with Macrophages, Eosinophils, and Tem cells. These insights provide novel perspectives for clinical diagnosis and treatment of LUAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437281PMC
http://dx.doi.org/10.1038/s41598-024-73498-2DOI Listing

Publication Analysis

Top Keywords

immune infiltration
12
machine learning
8
lung adenocarcinoma
8
immune cell
8
infiltration stage
8
stage luad
8
immune
5
development validation
4
validation machine
4
learning models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!