Comprehensive input models and machine learning methods to improve permeability prediction.

Sci Rep

Earth Sciences Department, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.

Published: September 2024

This study investigates the use of machine learning techniques and the proper selection of input data to estimate permeability in geosciences, using six types of input logs: gamma ray (GR), resistivity (RT), effective porosity (PHIE), density (RHO), sonic (DT), and compensated neutron porosity (NPHI). A total of 57 models were constructed using combinations of these logs and tested using five machine learning methods: Extreme Learning Machine (ELM), Random Forest (RF), Gradient Boosting (GB), K-Nearest Neighbor (KNN), and Multilayer Perceptron (MLP). This approach produced 285 unique permeability predictions. RF had the highest correlation coefficient (0.925) and average error (0.196), indicating a precision-correlation trade-off. The ELM approach had the lowest average error, 0.083, and a correlation value of 0.871. Testing on a blind well revealed that the GB and RF approaches were highly effective in predicting permeability, with R² values of 0.92 and 0.90, respectively, even in untested settings. The findings emphasize the need of using appropriate machine learning algorithms and input data to improve model accuracy and reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437116PMC
http://dx.doi.org/10.1038/s41598-024-73846-2DOI Listing

Publication Analysis

Top Keywords

machine learning
16
input data
8
average error
8
machine
5
learning
5
comprehensive input
4
input models
4
models machine
4
learning methods
4
methods improve
4

Similar Publications

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

AbbVie Inc., North Chicago, IL, USA.

Background: In Alzheimer's Disease (AD) trials, clinical scales are used to assess treatment effect in patients. Minimizing statistical uncertainty of trial outcomes is an important consideration to increase statistical power. Machine learning models can leverage baseline data to create AI-generated digital twins - individualized predictions (or prognostic scores) of how each patient's clinical outcomes may change during a trial assuming they received placebo.

View Article and Find Full Text PDF

Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Imperial College London, London, United Kingdom; UK Dementia Research Institute, Care Research and Technology Centre, London, United Kingdom.

Background: Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well-being of PLWD, cause stress to carers and increase pressure on healthcare services.

Method: We use routinely collected in-home sensory data to monitor nocturnal activity and sleep data.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Department of Psychology & Language Sciences, University College London, London, United Kingdom.

Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.

Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!