Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes mellitus (DM) is a chronic metabolic disease that is highly susceptible to kidney injury. Di'ao XinXueKang capsules (DXXK) is a novel Chinese herbal medicine that has been used in clinical trials for the therapy of DM and kidney disease, but the underlying pharmacological mechanism remains unclear. This study aims to integrate network pharmacology, molecular docking and in vivo experiments to explore the potential mechanisms of DXXK in the treatment of diabetic kidney injury. The chemical constituents of DXXK were extracted from the ETCM and Batman-TCM databases, and then evaluated for their pharmacological activity via the Swiss ADME platform. Multiple disease databases were searched and integrated for DM-related targets. Overlapping targets were then collected to construct a protein-protein interaction (PPI) network. KEGG and GO enrichment analyses were performed based on the Metascape database, and molecular docking was performed using AutoDock Vina software. The main components in DXXK were analyzed by HPLC. The results of network pharmacology and molecular docking were validated in an animal model of DM induced by the combination of a high-fat diet (HFD) and streptozotocin (STZ). We screened and obtained 7 ingredients and identified dioscin, protodioscin, and pseudoprotodioscin as the major components of DXXK by HPLC. A total of 2,216 DM-related pathogenic genes were obtained from DrugBank, GeneCards, OMIM, and DisGeNET databases. KEGG and GO enrichment analyses indicated that the TGF-beta signaling pathway is a critical pathway associated with DM therapy. Molecular docking revealed that the ingredients in DXXK bind to the pivotal targets TGFβ1, Smad2, and Smad3. In diabetic mice, we found that DXXK alleviated diabetic symptoms, lowered blood glucose, improved insulin tolerance, and modulated lipid metabolism. Furthermore, DXXK attenuated renal lesions and fibrosis by downregulating TGFβ1, Smad2, and Smad3. Collectively, our results suggest that DXXK has the potential to regulate glucolipid metabolism in DM, and it may serve as a viable therapeutic option for renoprotection by inhibiting of the TGF-β1/Smad2/3 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436795 | PMC |
http://dx.doi.org/10.1038/s41598-024-73642-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!