Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the air-to-ground transmissions, the lifespan of the network is based on the "unmanned aerial vehicle's (UAV)" life span because of the limited battery capacity. Thus, the enhancement of energy efficiency and the outage of the ground candidate's minimization are significant factors of the network functionality. UAV-aided transmission can highly enhance the spectrum efficacy and coverage. Because of their flexible deployment and the high maneuverability, the UAVs can be the best alternative for the situations where the "Internet of Things (IoT)" systems utilize more energy to attain the essential information rate, when they are far away from the terrestrial base station. Therefore, it is significant to win over the few troubles in the conventional UAV-aided efficiency approaches. Thus, this proposed work is aimed to design an innovative energy efficiency framework in the UAV-assisted network using a reinforcement learning mechanism. The energy efficiency optimization in the UAV offers better wireless coverage to the static and mobile ground user. Presently, reinforcement learning techniques effectively optimize the energy efficiency rate of the system by employing the 2D trajectory mechanism, which effectively removes the interference rate attained in the nearby UAV cells. The main objective of the recommended framework is to maximize the energy efficiency rate of the UAV network by performing the joint optimization using UAV 3D trajectory, with the energy utilized during interference accounting, and connected user counts. Hence, an efficient Adaptive Deep Reinforcement Learning with Novel Loss Function (ADRL-NLF) framework is designed to provide a better energy efficiency rate to the UAV network. Moreover, the parameter of ADRL is tuned using the Hybrid Energy Valley and Hermit Crab (HEVHC) algorithm. Various experimental observations are performed to observe the effectualness rate of the recommended energy efficiency model for UAV-based networks over the classical energy efficiency framework in UAV Networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437095 | PMC |
http://dx.doi.org/10.1038/s41598-024-71621-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!