A major challenge in per- and polyfluoroalkyl substances (PFAS) remediation has been their structural and chemical diversity, ranging from ultra-short to long-chain compounds, which amplifies the operational complexity of water treatment and purification. Here, we present an electrochemical strategy to remove PFAS from ultra-short to long-chain PFAS within a single process. A redox-polymer electrodialysis (redox-polymer ED) system leverages a water-soluble redox polymer with inexpensive nanofiltration membranes, facilitating the treatment of varied chain lengths of PFAS without membrane fouling. Our approach combines both ion migration by electrodialysis (for PFAS with chain lengths ≤C4) and electrosorption strategies (for PFAS with chain lengths ≥C6) to eliminate approximately 90% of ultra-short-, short-chain, and long-chain PFAS. At the same time, we achieve continuous desalination of the source water down to potable water level. The redox-polymer ED exhibits remarkable PFAS removal in real source water scenarios, including from matrices with 10,000 times higher salt concentrations, as well as secondary effluents from wastewaters. Additionally, the removed PFAS is mineralized with a defluorination performance between 76-100% by electrochemical oxidation, highlighting the viability of integrating the separation step with a reactive degradation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437098PMC
http://dx.doi.org/10.1038/s41467-024-52630-wDOI Listing

Publication Analysis

Top Keywords

long-chain pfas
12
chain lengths
12
pfas
10
ultra-short long-chain
8
pfas chain
8
source water
8
integrating redox-electrodialysis
4
redox-electrodialysis electrosorption
4
electrosorption removal
4
removal ultra-short-
4

Similar Publications

Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams.

Water Res

December 2024

Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems.

View Article and Find Full Text PDF

Revealing hidden risks: in vitro analysis of PFAS hazards in Mytilus galloprovincialis gills and digestive gland.

J Hazard Mater

December 2024

Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro 3810-193, Portugal. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their persistence and bioaccumulation, leading to widespread environmental contamination. Despite their recognised environmental risks, particularly to aquatic wildlife, including marine invertebrates, detailed impact studies are limited. PFAS can be categorised according to the length of the compound chain, with short-chain PFAS announced as a safer alternative to the more commonly used long-chain PFAS.

View Article and Find Full Text PDF

Perfluorohexanesulfonic Acid (PFHxS) Induces Hepatotoxicity through the PPAR Signaling Pathway in Larval Zebrafish ().

Environ Sci Technol

December 2024

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

In recent years, the industrial substitution of long-chain per- and polyfluoroalkyl substances (PFAS) with short-chain alternatives has become increasingly prevalent, resulting in the widespread environmental detection of perfluorohexanesulfonic acid (PFHxS), a short-chain PFAS. However, there remains limited information about the potential adverse effects of PFHxS at environmental concentrations to wildlife. Here, early life stage zebrafish () were exposed to environmentally relevant concentrations of PFHxS to better characterize the adverse effects of PFHxS on aquatic organisms.

View Article and Find Full Text PDF
Article Synopsis
  • In-source fragmentation (ISF) during electrospray ionization (ESI) of PFAS in LC-MS leads to reduced molecular ion response and misannotation of data.
  • Analysis of 82 PFAS identified that 38 of them have up to 100% ISF potential, particularly those with a carboxylate (CO) headgroup.
  • Seven fragmentation pathways were found, primarily involving the loss of the CO group, with higher temperatures worsening ISF, which is crucial for accurately identifying PFAS structures and their degradation products.
View Article and Find Full Text PDF

Enhancing rejection of short-chain per- and polyfluoroalkyl substances by tailoring the surface charge of nanofiltration membranes.

Water Res

December 2024

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China. Electronic address:

Nanofiltration (NF) effectively removes per- and polyfluoroalkyl substances (PFAS) from water but struggles with short-chain PFAS (i.e., those containing less than 6 perfluorinated carbons) due to size exclusion inefficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!