A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436788PMC
http://dx.doi.org/10.1038/s41467-024-52673-zDOI Listing

Publication Analysis

Top Keywords

species richness
12
seasonality primary
8
primary production
8
production explains
8
animal richness
8
richness
6
seasonality
4
explains richness
4
richness pioneering
4
pioneering benthic
4

Similar Publications

The intestinal microbiota is widely recognized as an integral factor in host health, metabolism, and immunity. In this study, the impact of dietary fiber sources on the intestinal microbiota and the production of short-chain fatty acids (SCFAs) was evaluated in Lohmann White laying hens. The hens were divided into four treatment groups: a control diet without fiber, a diet with wheat bran (mixed fibers), a diet with insoluble fiber (cellulose), and a diet with soluble fiber (pectin), with six replicates of four hens each.

View Article and Find Full Text PDF

Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited.

View Article and Find Full Text PDF

Bats play key roles in ecosystem functions and provide services to human populations. There is a need to protect bat populations and to mitigate the risks associated with pathogen spillover. Caves are key habitats for many bat species, which use them as roosting and breeding sites.

View Article and Find Full Text PDF

Planting native flora is a popular conservation strategy for pollinators. When searching for native plants, consumers may encounter cultivars of native plants, which can have different phenotypic traits than plants found in wild populations ("wild-type native plants"). Previous research evaluating pollinator visitation to wild-type native plants and native cultivars has yielded mixed results, in terms of whether their visitation rates are similar or distinct.

View Article and Find Full Text PDF

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!