AI Article Synopsis

  • Ring-shaped DNA sliding clamps are crucial for DNA replication and maintenance, requiring clamp loader complexes (CLCs) to open and position them on DNA.
  • The study presents six detailed structures of E. coli CLC with open and closed clamps before and after DNA binding, highlighting key steps in the loading process.
  • Findings reveal that the ATP-bound CLC first 'grabs' the clamp, then opens it enough for DNA to enter, ultimately allowing the clamp to close around the DNA.

Article Abstract

Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436948PMC
http://dx.doi.org/10.1038/s41467-024-52623-9DOI Listing

Publication Analysis

Top Keywords

clamp loading
12
clamp
8
escherichia coli
8
dna
8
coli clc
8
clc
5
structural characterisation
4
characterisation complete
4
complete cycle
4
cycle sliding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!