Exoplanet exploration has revealed that many-perhaps most-terrestrial exoplanets formed with substantial H-rich envelopes, seemingly in contrast to solar system terrestrials, for which there is scant evidence of long-lived primary atmospheres. It is not known how a long-lived primary atmosphere might affect the subsequent habitability prospects of terrestrial exoplanets. Here, we present a new, self-consistent evolutionary model of the transition from primary to secondary atmospheres. The model incorporates all Fe-C-O-H-bearing species and simulates magma ocean solidification, radiative-convective climate, thermal escape, and mantle redox evolution. For our illustrative example TRAPPIST-1, our model strongly favors atmosphere retention for the habitable zone planet TRAPPIST-1e. In contrast, the same model predicts a comparatively thin atmosphere for the Venus-analog TRAPPIST-1b, which would be vulnerable to complete erosion via non-thermal escape and is consistent with JWST observations. More broadly, we conclude that the erosion of primary atmospheres typically does not preclude surface habitability, and frequently results in large surface water inventories due to the reduction of FeO by H.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437211PMC
http://dx.doi.org/10.1038/s41467-024-52642-6DOI Listing

Publication Analysis

Top Keywords

primary atmospheres
12
atmospheres typically
8
secondary atmospheres
8
long-lived primary
8
primary
5
atmospheres
5
erosion large
4
large primary
4
typically leaves
4
leaves substantial
4

Similar Publications

Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

Plant chemical composition is a trait gaining increasing importance in plant ecology. However, there is limited research on the patterns and drivers of its variation among different plant functional groups and bioclimatic regions. We conducted an analysis of ionomes utilising X-ray fluorescence on 83 plant species from four distinct functional groups (grasses, legumes, forbs and woody species); we marked plots across 15 sites located in both the desert and Mediterranean bioclimatic regions.

View Article and Find Full Text PDF

Investigation of Er-Doped BaF Single Crystals for Infrared Emission and Photovoltaic Efficiency Enhancement.

Luminescence

January 2025

Department of Physics, IMN, Universidad de La Laguna, San Cristobal de La Laguna, Santa Cruz de Tenerife, Spain.

Er-doped BaF single crystals were investigated with two primary aims: first, to probe the infrared emissions from the I level (around 1.0 μm) under 1500-nm excitation and, second, to use the crystal to enhance the efficiency of silicon-based solar cells through upconversion mechanism. Upon excitation at 1500 nm, the upconversion emission spectrum of the Er-doped BaF single crystals, recorded in the range of 480-1080 nm, exhibited two well-structured visible bands at 538 and 650 nm, along with a strong near infrared emission at 971 nm.

View Article and Find Full Text PDF

The influence of land surface temperature on Ghana's climate variability and implications for sustainable development.

Sci Rep

January 2025

Department of Geography and Spatial Information Techniques, School of Civil and Environmental Engineering and Geography Science, Ningbo University, Ningbo, 315211, China.

Climate change poses significant global challenges, especially in the West African sub-region, with high temperature and precipitation patterns variability, threatening socio-economic stability and ecosystem health. While global factors such as greenhouse gases and oceanic circulations shape regional climates, this study focuses on the understudied role of local climatic variables in influencing near-surface air temperature (NST) in Ghana from 1981 to 2020. Based on ground observations, our findings reveal significant correlations between land surface temperature (LST) and NST before and after the identified breakpoint year of 2001.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!