Cotton is the most common natural fibre used in textile manufacture, used alone or with other fibres to create a wide range of fashion clothing and household textiles. Most of these textiles are cleaned using detergents and domestic or commercial washing machines using processes that require many chemicals and large quantities of water and energy. Enzymes can reduce this environmental footprint by enabling effective detergency at reduced temperatures, mostly by directly attacking substrates present in the soils. In the present study, we report the contribution of a cleaning cellulase enzyme based on the family 44 glycoside hydrolase (GH) endo-beta-1,4-glucanase from Paenibacillus polymyxa. The action of this enzyme on textile fibres improves laundry detergent performance in several vectors including soil anti-redeposition, dye transfer inhibition and stain removal. Molecular probes are used to study how this enzyme is targeting both amorphous cellulose and xyloglucan on textile fibres and the relationship between textile surface effects and observed performance benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436786PMC
http://dx.doi.org/10.1038/s41598-024-73128-xDOI Listing

Publication Analysis

Top Keywords

textile fibres
8
enzymatic modification
4
modification cotton
4
cotton fibre
4
fibre polysaccharides
4
polysaccharides enabler
4
enabler sustainable
4
sustainable laundry
4
laundry detergents
4
detergents cotton
4

Similar Publications

Rational Fabrication of Functionally-Graded Surfaces for Biological and Biomedical Applications.

Acc Mater Res

December 2024

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.

As a ubiquitous feature of the biological world, gradation, in either composition or structure, is essential to many functions and processes. Taking protein gradation as an example, it plays a pivotal role in the development and evolution of human bodies, including stimulation and direction of the outgrowth of peripheral nerves in a developing fetus. It is also critically involved in wound healing by attracting and guiding immune cells to the site of injury or infection.

View Article and Find Full Text PDF

2D perovskite has demonstrated great potential for application in photovoltaic devices due to the tunable energy bands, suppressed ion migration, and high stability. However, 2D perovskite solar cells (PSCs) display suboptimal efficiency in comparison to 3D perovskite solar cells, which can be attributed to the quantum confinement and dielectric confinement effects resulting from the intercalation of organic spacer cations into the perovskite lattice. This review starts with the fundamental structural characteristics, optoelectronic properties, and carrier transport dynamics of 2D PSCs, followed by the discussion of approaches to improve the photovoltaic performance of 2D PSCs, including the manipulation of crystal orientation, phase distribution, pure phase, organic layer, and device engineering.

View Article and Find Full Text PDF

Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.

View Article and Find Full Text PDF

Intense and vibrant color construction and functionalization for protein macromolecule/polyamide two-component fabric by sustainable microbial nano prodigiosins based on adjustable pigment allocation.

Int J Biol Macromol

December 2024

College of Textiles & Clothing, Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China. Electronic address:

Silk/polyamide fabric inherits the advantages of natural and synthetic fibers, making them remarkable in textile and garment field. However, the use of synthetic chemicals for color construction and functionalization of silk/polyamide fabrics is problematic because of their non-renewable resources and harmful effects on the environment. Furthermore, achieving even color construction of silk and polyamide fibers in one bath is challenging due to their significant differences in chemical structure and surface properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!