AI Article Synopsis

Article Abstract

Nanotubes showed merits including high structural strength-to-weight ratio. However, tubes are less favored regarding stiffness and strength. Nano-I-beams are proposed for improved nano-mechanics. Computationally, the study proposes novel molecular designs of I-beam-like shaped structures. A conformation analysis, molecular dynamics and first principles-based optimization are presented. The study proposes options based on the configuration of the molecular nano-I-beam structure providing less number of planes of symmetry and hence more stability than nanotube-like structures. These designs feature a unique geometrical differentiator of having the walls of the out-of-plane hexagonal motif-based molecular nano-I-beam (CH) inclined with different inclination angles enabling promising properties. The stability of the proposed nano-I-beam is proved on par with the corresponding nanotube-like structure. First principles-based evidence is provided on the comparable polarizability and the comparable ability to store energy of the supercell of the crystalline slab nano-I-beam in comparison with the corresponding nanotube. A proposed hybrid octa-hexagonal-cubic molecular nano-I-beam (CH) remedies the nano-buckling observed in the alike square-octagonal nanostructure. The molecular nano-I-beam exhibits intrinsic switchability that enables the nano-I-beam to be a topological semiconductor/insulator. The results show promising electronic and elastic properties of the proposed nano-I-beams that suit several applications such as their use in capacitors, transistors, insulators, batteries, quantization-based nano-devices, solid lubricant additive to grease, toughening fibers of nanocomposites, hydrophobic films, emissions adsorbents, catalytic sensors, PAH materials for space, and sustainable energy. The molecular nano-I-beam provides the base of the corresponding 2-D crystalline slab nano-I-beams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437057PMC
http://dx.doi.org/10.1038/s41598-024-67605-6DOI Listing

Publication Analysis

Top Keywords

molecular nano-i-beam
24
molecular
8
options based
8
based configuration
8
principles-based optimization
8
study proposes
8
nano-i-beam
8
crystalline slab
8
nano-i-beam class
4
class materials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!