Understanding self-organized pattern formation is fundamental to biology. In 1952, Alan Turing proposed a pattern-enabling mechanism in reaction-diffusion systems containing chemical species later conceptualized as activators and inhibitors that are involved in feedback loops. However, identifying pattern-enabling regulatory systems with the concept of feedback loops has been a long-standing challenge. To date, very few pattern-enabling circuits have been discovered experimentally. This is in stark contrast to ubiquitous periodic patterns and symmetry in biology. In this work, we systematically study Turing patterns in 23 elementary biochemical networks without assigning any activator or inhibitor. These mass action models describe post-synthesis interactions applicable to most proteins and RNAs in multicellular organisms. Strikingly, we find ten simple reaction networks capable of generating Turing patterns. While these network models are consistent with Turing's theory mathematically, there is no apparent connection between them and commonly used activator-feedback intuition. Instead, we identify a unifying network motif that enables Turing patterns via regulated degradation pathways with flexible diffusion rate constants of individual molecules. Our work reveals widespread biochemical systems for pattern formation, and it provides an alternative approach to tackle the challenge of identifying pattern-enabling biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436923 | PMC |
http://dx.doi.org/10.1038/s41467-024-52591-0 | DOI Listing |
Brain Stimul
January 2025
Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA.
Sci Rep
January 2025
The Alan Turing Institute, London, UK.
Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.
The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.
View Article and Find Full Text PDFDev Biol
January 2025
Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France. Electronic address:
In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!