ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants.

Nat Commun

Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Published: September 2024

Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437130PMC
http://dx.doi.org/10.1038/s41467-024-52474-4DOI Listing

Publication Analysis

Top Keywords

splice-altering variants
12
variants
10
multiplexed assay
8
putative splice-altering
8
rna splicing
8
experimental data
8
assay
5
parse-seq
4
parse-seq calibrated
4
calibrated multiplexed
4

Similar Publications

Mutations that impact splicing play a significant role in disease etiology but are not fully understood. To characterize the impact of exonic variants on splicing in 71 clinically-actionable disease genes in asymptomatic people, we analyzed 32,112 exonic mutations from ClinVar and Geisinger MyCode using a minigene reporter assay. We identify 1,733 splice-disrupting mutations, of which the most extreme 1-2% of variants are likely to be deleterious.

View Article and Find Full Text PDF

Background: Pathogenic variants in the gene are associated with dystrophinopathy including Duchenne and Becker muscular dystrophy (DMD/BMD). Targeted gene, gene panels, exomes and genome sequencing have advanced genetic diagnostics, yet some cases remain elusive.

Methods: We performed total RNA sequencing (RNAseq) on muscle biopsy from 13 male patients with a clinical diagnosis of DMD/BMD.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration and weakness, due to mutations in the DMD gene, which encodes the dystrophin protein. While mutations within the coding regions of DMD have been extensively studied, recent focus has shifted to deep intronic variants for their potential impact on disease severity. Here, we characterize two deep intronic variants, c.

View Article and Find Full Text PDF

ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants.

Nat Commun

September 2024

Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A.

View Article and Find Full Text PDF

A deep intronic splice-altering variant causes APECED syndrome through antisense oligonucleotide-targetable pseudoexon inclusion.

Sci Transl Med

September 2024

Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Article Synopsis
  • APECED is a serious genetic autoimmune disorder linked to variants in the autoimmune regulator (AIRE) gene, with 16% of evaluated patients lacking known harmful variants, most of whom are of Puerto Rican descent.
  • Researchers discovered a deep intronic variant (c.1504-818 G>A) in these patients that causes a cryptic splice site leading to a dysfunctional protein through pseudoexon inclusion.
  • They developed an antisense oligonucleotide (ASO) that corrected this genetic issue, demonstrating the potential for targeted treatments in APECED patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!