Transition metal oxides are state-of-the-art materials for catalysing the oxygen evolution reaction (OER), whose slow kinetics currently limit the efficiency of water electrolysis. However, microscale physicochemical heterogeneity between particles, dynamic reactions both in the bulk and at the surface, and an interplay between particle reactivity and electrolyte makes probing the OER challenging. Here, we overcome these limitations by applying state-of-the-art compressive Raman imaging to uncover concurrent bias-dependent pathways for the OER in a dense, crystalline electrocatalyst, α-LiIrO. By spatially and temporally tracking changes in stretching modes we follow catalytic activation and charge accumulation following ion exchange under various electrolytes and cycling conditions, comparing our observations with other crystalline catalysts (IrO, LiCoO). We demonstrate that at low overpotentials the reaction between water and the oxidized catalyst surface is compensated by bulk ion exchange, as usually only found for amorphous, electrolyte permeable, catalysts. At high overpotentials the charge is compensated by surface redox active sites, as in other crystalline catalysts such as IrO. Hence, our work reveals charge compensation can extend beyond the surface in crystalline catalysts. More generally, the results highlight the power of compressive Raman imaging for chemically specific tracking of microscale reaction dynamics in catalysts, battery materials, or memristors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437135PMC
http://dx.doi.org/10.1038/s41467-024-52536-7DOI Listing

Publication Analysis

Top Keywords

compressive raman
12
raman imaging
12
crystalline catalysts
12
oxygen evolution
8
evolution reaction
8
ion exchange
8
catalysts iro
8
catalysts
5
concurrent oxygen
4
reaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!