AI Article Synopsis

  • - Eukaryotic genomes usually have one enzyme from the DXO/Dxo1/Rai1 family that helps break down non-standard RNA ends, while some yeasts have two copies, including Dxo1, which is essential for processing 25S rRNA.
  • - The study finds that the ability to process 25S rRNA evolved specifically in budding yeasts, not in other organisms, and this developed alongside a gene duplication event.
  • - Interestingly, different types of budding yeasts have independently evolved similar traits by duplicating their DXO/Dxo1/Rai1 gene and allowing one copy to gain new functions for processing 25S rRNA, illustrating a case of parallel evolution.

Article Abstract

Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical GpppN. In contrast, the genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571810PMC
http://dx.doi.org/10.1261/rna.080210.124DOI Listing

Publication Analysis

Top Keywords

25s rrna
12
processing function
8
budding yeasts
8
25s processing
8
25s
5
independent neofunctionalization
4
neofunctionalization dxo1
4
dxo1 led
4
led 25s
4
rrna processing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!