Salinization and low-dose levels of pesticides alter brain shape of larval amphibians.

Environ Pollut

Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180-3590, USA.

Published: December 2024

Wetland communities are increasingly threatened by multiple stressors simultaneously, such as pesticides and salinization. We examined the effects of ecologically-relevant exposures to broad-spectrum insecticides and salinization on amphibian neurodevelopment, which is strongly linked to how organisms respond behaviorally to environmental change. Prior research showed that exposure to trace concentrations of an organophosphate pesticide (chlorpyrifos) altered the brain shape and behavior of larval and metamorphic amphibians. It is unknown whether brain shape is altered by additional pesticides and road salt. Using outdoor mesocosms, we tested whether salt (NaCl) and representatives from three pesticide families (organophosphates, pyrethroids, and neonicotinoids) altered tadpole (Lithobates pipiens) brain shape. Of the two organophosphates, chlorpyrifos induced relatively longer telencephalon lengths relative to body mass, consistent with previous studies, but malathion had no effect on brain shape. Of the two pyrethroids, permethrin, but not cypermethrin, increased telencephalon length. For the neonicotinoids, there were marginally significant effects of imidacloprid and thiamethoxam on telencephalon length. Thus, the impacts of pesticides on brain shape was not dictated by pesticide family. Exposure to relatively high concentrations of salt resulted in brains that were less wide but had longer optic tecta. Although we failed to find strong interactive effect of salt with pesticides, there was some weak, nonsignificant, evidence that exposure to salt masked responses to pesticides. Together, our results indicate that environmentally realistic levels of pesticides and salinization can alter larval brain shape. Our study highlights the importance of studying the impacts of naturally-occurring levels of pesticides and salinization on vertebrate neural development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125027DOI Listing

Publication Analysis

Top Keywords

brain shape
28
levels pesticides
12
pesticides salinization
12
pesticides
8
telencephalon length
8
brain
7
shape
7
salinization
5
salt
5
salinization low-dose
4

Similar Publications

Glioblastoma multiforme (GBM), the most aggressive primary brain tumour, exhibits low survival rates due to its rapid growth, infiltrates surrounding brain tissue, and is highly resistant to treatment. One major challenge is oedema infiltration, a fluid build-up that provides a path for cancer cells to invade other areas. MRI resolution is insufficient to detect these infiltrating cells, leading to relapses despite chemotherapy and radiotherapy.

View Article and Find Full Text PDF

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Background: Family environment plays a critical role in shaping stress response systems. Concordance between mothers' and children's physiological states, specifically their Respiratory Sinus Arrhythmia (RSA), reflects dyadic co-regulation. Negative or weakened RSA synchrony during interactions is linked to various psychosocial risks, but existing research has focused on risks in the mother or child as opposed to the dyad.

View Article and Find Full Text PDF

The rise of social media has profoundly altered the social world - introducing new behaviours which can satisfy our social needs. However, it is yet unknown whether human social strategies, which are well-adapted to the offline world we developed in, operate as effectively within this new social environment. Here, we describe how the computational framework of Reinforcement Learning can help us to precisely frame this problem and diagnose where behaviour-environment mismatches emerge.

View Article and Find Full Text PDF

Amygdala-centered emotional processing in Prolonged Grief Disorder: Relationship with clinical symptomatology.

Biol Psychiatry Cogn Neurosci Neuroimaging

December 2024

Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:

Background: Prolonged Grief Disorder is a multidimensional condition with adverse health consequences. We hypothesized that enhanced negative emotional bias characterizes this disorder and underlies its key clinical symptoms.

Methods: In a cross-sectional design, chronically grieving older adults (61.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!