During inner ear development, specification of sensory epithelia requires dynamic regulation of Fgf signaling. In zebrafish, high levels of Fgf are necessary and sufficient to specify the utricular/vestibular macula, whereas the saccular/auditory macula requires a discreet lower level of Fgf. Transcription factors Pax2a and Pax5 act downstream of Fgf to help specify utricular identity, loss of which leads to sporadic extrusion of hair cells from the utricular macula. The mechanism for utricular instability is not clear but is potentially related to reduced expression of cdh1/Ecad caused by disruption of pax2a. Here we find that utricular hair cells in pax2-/- and pax5-/- mutants gradually lose adhesive contact with the macula, leading to ejection of intact hair cells from either the basal or apical surface. The phenotype is far more severe in pax2a-/- mutants and is progressive, resulting in loss of large swaths of the utricular hair cells by 82 hpf. Instability is caused by elevated Fgf signaling in the utricle, as modest reduction of Fgf signaling with a low dose of SU5402 prevents hair cell loss in pax2a-/- mutants. Misexpression of cdh1/Ecad in pax2a-/- mutants partially rescues pax2a-/- mutants. Elevating β-catenin levels by treatment with BIO, or misexpression of a mutant form of β-catenin lacking transcriptional activity but retaining cell adhesion function, fully rescues pax2a-/- mutants. In contrast, Wnt signaling is not required for utricular stability. Thus, Pax2/5 factors serve to counteract the destabilizing effects of elevated Fgf signaling needed to specify utricular identity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2024.09.009 | DOI Listing |
Hear Res
January 2025
Department of Neuroscience, University of Wisconsin-Madison, WI 53706, USA.
We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.
View Article and Find Full Text PDFElife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Biochim Biophys Acta Mol Cell Res
January 2025
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:
Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.
View Article and Find Full Text PDFCureus
December 2024
School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA.
Introduction: Dentists and dental professionals report a high prevalence of noise-induced hearing loss (NIHL) and related symptoms. Chronic exposure to high-frequency dental instrument sounds, which can damage the outer hair cells (OHCs) of the cochlea, is strongly linked to their NIHL. Similarly, dental students in teaching clinics often report symptoms associated with NIHL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!