AI Article Synopsis

Article Abstract

The Sundarbans represent the largest mangrove system on Earth, covering >10,000 km. These mangroves can export a vast amount of aquatic carbon that can be potentially sequestered for millennia. However, the mechanisms that drive these processes remain poorly constrained. Here, we estimate porewater-driven carbon exchange between the Sundarbans and the Bay of Bengal using high-resolution time series and a radon groundwater mass balance approach spanning a neap-spring tidal cycle. Submarine groundwater discharge (SGD) increased from neap to spring tides by 352 % up to a maximum of 65.6 cm d largely driven by creek bank overtopping after the mid-tide. Exports of dissolved organic and inorganic carbon and alkalinity doubled between neap and spring, likely due to the 'first flush' of older porewater in the mangrove flats. Groundwater discharge was a significant driver of the net carbon export, contributing up to 86.7 % of DIC and 74.0 % of alkalinity during the spring tide while contributing a lower proportion of DOC (4 %-23 %). If these results are representative of the Sundarbans more broadly, carbon fluxes from the Sundarbans would be more than an order of magnitude higher than some of the world's largest rivers on an areal basis, highlighting the importance of Sundarbans mangroves to global oceanic carbon budgets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176463DOI Listing

Publication Analysis

Top Keywords

groundwater discharge
12
bank overtopping
8
neap spring
8
carbon
7
sundarbans
5
groundwater
4
discharge bank
4
overtopping drive
4
drive large
4
large carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!