A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo reduction of skin inflammation using ferulic acid-loaded lipid vesicles derived from Brewer's spent grain. | LitMetric

In vivo reduction of skin inflammation using ferulic acid-loaded lipid vesicles derived from Brewer's spent grain.

Int J Pharm

Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.

Published: December 2024

Breweŕs spent grain (BSG) is the main by-product of the brewing industry, and due to its rapid decomposition, it generates serious environmental problems such as malodors and greenhouse gases emissions. On the other hand, this lignocellulosic compound contains a large number of antioxidants, being ferulic acid (FA) the most abundant. FA is a powerful antioxidant molecule that has demonstrated significant protective effects on key components of the skin, including keratinocytes, fibroblasts, collagen, and elastin. FA inhibits melanogenesis, promotes angiogenesis and accelerates the wound healing although its use is limited by its rapid oxidation. In this study, different hydrolysis treatments (chemical, enzymatic and hydrothermal) were performed on BSG to obtain FA. Herein FA-loaded ultradeformable liposomes (ULs) were designed to improve their stability and in vivo performance. These nanosystems allow FA permeability through human skin, as proven by an ex vivo skin permeability assay using Franz diffusion cells. The toxicity and anti-inflammatory activity of the formulation has been investigated. The free form and 100 nm FA_ULs were evaluated. Cell viability was dose-dependent and provided optimal results for the treatment of inflammatory skin conditions in an in vivo Oxazolone-induced Delayed Type Hypersensitivity model using Swiss CD1 mice, demonstrated by the reduction of the inflammatory cytokines expression, ear thickness, bioluminescence and histological evaluation. These results pave the way for FA-based treatments of skin and inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124764DOI Listing

Publication Analysis

Top Keywords

spent grain
8
skin
6
vivo
4
vivo reduction
4
reduction skin
4
skin inflammation
4
inflammation ferulic
4
ferulic acid-loaded
4
acid-loaded lipid
4
lipid vesicles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!