Drought is a major abiotic stresses that severely hinder plant growth and agricultural productivity. The receptor-like kinase gene, ERECTA, has been proved to play important role in promoting the response to abiotic stress in crops. However, the specific molecular mechanisms underlying the drought resistance mediated by ERECTA in potato (Solanum tuberosum L.) are not well understood. In this study, sequence analysis confirmed that the StERECTA gene contains eight leucine-rich repeat (LRR) domains and an S_TKc domain, and these domains were highly conserved in Solanaceae family. Under drought stress, Arabidopsis thaliana strains overexpressing StERECTA showed increased biomass, proline (PRO) content, and antioxidant enzyme activities compared to the wild-type strains while the mutant ERECTA strain (er105) exhibited opposite phenotype. Additionally, StERECTA overexpression upregulated the expression of drought response marker genes (LEA3, DREB2A and P5CS1), improved levels of ABA and auxin, reduced stomatal density and relative expression level of stomatal development related genes (SPCH, FAMA and MUTE). Furthermore, Co-immunoprecipitation (Co-IP) assays demonstrated that StERECTA physically interacted with the YODA protein. In conclusion, our study provides new insights into the role and regulatory mechanism of StERECTA in response to drought stress. These findings may serve as a basis for genetic improvement of potato to enhance their tolerance to abiotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2024.154353 | DOI Listing |
Ann Bot
January 2025
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
Background: Sweet orange is an important economic crop, and salt stress can inhibit its growth and development.
Methods: In this study, we identified AP2/ERF genes in sweet orange via bioinformatics and performed a combined transcription‒metabolism analysis, which revealed for the first time the integrated molecular mechanism of salt stress regulation in sweet orange.
Key Results: A total of 131 sweet orange AP2/ERF genes were identified and categorized into five groups.
Plant Cell Rep
January 2025
College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China.
N-terminal acetyltransferase Naa50 plays an important regulatory role in ovule development by indirectly promoting cell wall invertase 2/4 expression.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.
View Article and Find Full Text PDFBioTech (Basel)
January 2025
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.
The development of efficient producers of recombinant pharmaceuticals based on plant cell suspension cultures is a pressing challenge in modern applied science. A primary limitation of plant cell cultures is their relatively low yield of the target protein. One strategy to enhance culture productivity involves reducing cell aggregation.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA.
Starch accumulation in plants provides carbon for nighttime use, for regrowth after periods of dormancy, and for times of stress. Both ɑ- and β-amylases (AMYs and BAMs, respectively) catalyze starch hydrolysis, but their functional roles are unclear. Moreover, the presence of catalytically inactive amylases that show starch excess phenotypes when deleted presents questions on how starch degradation is regulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!