Although polyethylene terephthalate (PET) fibers are a representative form of plastic pollutants, studies on their toxicity are currently limited compared to other plastic types. Moreover, the effect of natural organic matter (NOM) on their toxicity has not been investigated. In this study, female and male adult zebrafish were exposed to synthesized PET fibers at concentrations of 0.1, 1, 10, and 100 mg/L in the presence and absence of 10 mg/L of NOM for 10 d. Bioaccumulation of PET fibers in zebrafish intestine, liver, and gills was identified and expression levels of reactive oxygen species (ROS) generation, sex hormones, and oxidative stress and sex hormone-related genes were measured. In addition, the developmental stages of gonadal cells were examined through histological analysis. We found that PET fibers bioaccumulated in the intestine and liver of zebrafish. ROS generation significantly increased at 100 mg/L of PET fibers, the expression of oxidative stress-related genes decreased in female and increased in male zebrafish. Exposure to 100 mg/L of PET fibers did not affect 17-beta estradiol, but significantly decreased the testosterone levels in male zebrafish. Sex hormone-related genes significantly decreased in both female and male zebrafish, except for androgen receptor in female zebrafish. However, these changes were exacerbated by the removal of NOM, suggesting a protective effect of NOM against PET fibers toxicity. We demonstrated that the accumulated PET fibers may lead to oxidative stress and sex hormone alteration, and disrupt the development of gonadal cells. Additionally, the NOM coating did not alter bioaccumulation considerably, but mitigated the adverse effects at the hormone level in PET fiber-exposed zebrafish. Thus, this study provides a basis for further research on the toxicity assessment of PET fibers and interactions between NOM and PET fiber-related toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.117108 | DOI Listing |
Molecules
January 2025
School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland.
The textile industry's rapid growth and reliance on synthetic fibres have generated significant environmental pollution, highlighting the urgent need for sustainable waste management practices. Chemical recycling offers a promising pathway to reduce textile waste by converting used fibres into valuable raw materials, yet technical challenges remain due to the complex compositions of textile waste, such as dyes, additives, and blended fabrics.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
January 2025
JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan.
Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.
View Article and Find Full Text PDFBiofabrication
January 2025
College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!