Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.150734 | DOI Listing |
Photochem Photobiol
December 2024
Graduate School of Informatics, Nagoya University, Nagoya, Japan.
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. Electronic address:
Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs.
View Article and Find Full Text PDFSci Adv
September 2024
Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.
The period of circadian clocks is maintained at close to 24 hours over a broad range of physiological temperatures due to temperature compensation of period length. Here, we show that the quantitative control of the core clock proteins TIMING OF CAB EXPRESSION 1 [TOC1; also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)] and PRR5 is crucial for temperature compensation in . The double mutant has a shortened period at higher temperatures, resulting in weak temperature compensation.
View Article and Find Full Text PDFBMC Genomics
August 2024
Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
Background: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species.
Results: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis.
Plant Cell
October 2024
Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China.
During the floral transition, many plant species including chrysanthemum (Chrysanthemum morifolium) require continuous photoperiodic stimulation for successful anthesis. Insufficient photoperiodic stimulation results in flower bud arrest or even failure. The molecular mechanisms underlying how continuous photoperiodic stimulation promotes anthesis are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!