A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continual learning in medical image analysis: A survey. | LitMetric

Continual learning in medical image analysis: A survey.

Comput Biol Med

Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China. Electronic address:

Published: November 2024

In the dynamic realm of practical clinical scenarios, Continual Learning (CL) has gained increasing interest in medical image analysis due to its potential to address major challenges associated with data privacy, model adaptability, memory inefficiency, prediction robustness and detection accuracy. In general, the primary challenge in adapting and advancing CL remains catastrophic forgetting. Beyond this challenge, recent years have witnessed a growing body of work that expands our comprehension and application of continual learning in the medical domain, highlighting its practical significance and intricacy. In this paper, we present an in-depth and up-to-date review of the application of CL in medical image analysis. Our discussion delves into the strategies employed to address specific tasks within the medical domain, categorizing existing CL methods into three settings: Task-Incremental Learning, Class-Incremental Learning, and Domain-Incremental Learning. These settings are further subdivided based on representative learning strategies, allowing us to assess their strengths and weaknesses in the context of various medical scenarios. By establishing a correlation between each medical challenge and the corresponding insights provided by CL, we provide a comprehensive understanding of the potential impact of these techniques. To enhance the utility of our review, we provide an overview of the commonly used benchmark medical datasets and evaluation metrics in the field. Through a comprehensive comparison, we discuss promising future directions for the application of CL in medical image analysis. A comprehensive list of studies is being continuously updated at https://github.com/xw1519/Continual-Learning-Medical-Adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.109206DOI Listing

Publication Analysis

Top Keywords

medical image
16
image analysis
16
continual learning
12
medical
9
learning medical
8
medical domain
8
application medical
8
learning
6
image
4
analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!