Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the dynamic realm of practical clinical scenarios, Continual Learning (CL) has gained increasing interest in medical image analysis due to its potential to address major challenges associated with data privacy, model adaptability, memory inefficiency, prediction robustness and detection accuracy. In general, the primary challenge in adapting and advancing CL remains catastrophic forgetting. Beyond this challenge, recent years have witnessed a growing body of work that expands our comprehension and application of continual learning in the medical domain, highlighting its practical significance and intricacy. In this paper, we present an in-depth and up-to-date review of the application of CL in medical image analysis. Our discussion delves into the strategies employed to address specific tasks within the medical domain, categorizing existing CL methods into three settings: Task-Incremental Learning, Class-Incremental Learning, and Domain-Incremental Learning. These settings are further subdivided based on representative learning strategies, allowing us to assess their strengths and weaknesses in the context of various medical scenarios. By establishing a correlation between each medical challenge and the corresponding insights provided by CL, we provide a comprehensive understanding of the potential impact of these techniques. To enhance the utility of our review, we provide an overview of the commonly used benchmark medical datasets and evaluation metrics in the field. Through a comprehensive comparison, we discuss promising future directions for the application of CL in medical image analysis. A comprehensive list of studies is being continuously updated at https://github.com/xw1519/Continual-Learning-Medical-Adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.109206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!