Cryptococcosis, caused by infections with C. neoformans and C. gattii, presents a serious threat to global health and necessitates effective treatment strategies. Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF, is an immune-modulating cytokine that has been utilized clinically to improve host defense against infection; however, the impact of GM-CSF treatment in C. gattii infection has not been elucidated. Our current study aimed to investigate the effect of GM-CSF treatment on pulmonary immune response during C. gattii infection. In response to C. gattii infection, GM-CSF-expressing T helper cells and CD11b myeloid were enhanced in the lungs. The intranasal administration of GM-CSF during C. gattii infection significantly reduced pulmonary cryptococcal load, promoted an increase in pulmonary Th17 cells, as well as neutrophil infiltration in the lungs. Exposure of neutrophils to C. gattii in the presence of GM-CSF resulted in an increased neutrophil phagocytosis and fungal killing capacity, generation of reactive oxygen species (ROS), and upregulation of inflammatory cytokines and anti-microbial peptides. Although GM-CSF treatment in C. neoformans-infected mice had a comparable impact on the reduction of lung fungal burden, it resulted in the enhancement of Th1-type cytokine IFN-γ and the activation of M1 macrophages. Altogether, this study demonstrated that the intranasal delivery of GM-CSF has distinct effects on promoting the protection against C. gattii and C. neoformans by activating neutrophil/type-17 immune response and stimulating M1 macrophage/type-1 immunity, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.113259 | DOI Listing |
J Infect Dis
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
Cryptococcus gattii is a saprophytic basidiomycete that grows in the environment and can cause systemic cryptococcosis. Ocular cryptococcosis causes blindness and is commonly associated with central nervous system (CNS) infection. Toll-like receptor 9 (TLR9) can control cryptococcosis and another mycosis.
View Article and Find Full Text PDFClin Infect Dis
January 2025
Faculty of Medicine, University of British Columbia, Vancouver, Canada.
Background: Infection by Cryptococcus gattii can lead to pulmonary or central nervous system (CNS) disease, or both. Whether site of infection and disease severity are associated with C. gattii species and lineages or with certain underlying medical conditions, or both is unclear.
View Article and Find Full Text PDFJ Paediatr Child Health
January 2025
Infection Management, QCH and CHQ Clinical Unit, The University of Queensland, South Brisbane, Queensland, Australia.
Curr Med Mycol
April 2024
Department of Biotechnology, College of Science, University of Anbar, Ramadi, Anbar, Iraq.
Background And Purpose: and are highly virulent species that cause diseases, such as meningoencephalitis and pulmonary infections. The gene predominantly determines the virulence of the pathogenic species. This study aimed to examine in both pathogenic and non-pathogenic species.
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.
Cryptococcosis is a lethal mycosis instigated by the pathogenic species Cryptococcus neoformans and Cryptococcus gattii, primarily affects the lungs, manifesting as pneumonia, and the brain, where it presents as meningitis. Mortality rate could reach 100% if infections remain untreated in cryptococcal meningitis. Treatment options for cryptococcosis are limited and and there are no licensed vaccines clinically available to treat or prevent cryptococcosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!