In covert target detection, Alice attempts to send optical or microwave probes to determine the presence or absence of a weakly reflecting target embedded in thermal background radiation within a target region, while striving to remain undetected by an adversary, Willie, who is co-located with the target and collects all light that does not return to Alice. We formulate this problem in a realistic setting and derive quantum-mechanical limits on Alice's error probability performance in entanglement-assisted target detection for any fixed level of her detectability by Willie. We demonstrate how Alice can approach this performance limit using two-mode squeezed vacuum probes in the regime of small to moderate background brightness, and how such protocols can outperform any conventional approach using Gaussian-distributed coherent states. In addition, we derive a universal performance bound for nonadversarial quantum illumination without requiring the passive-signature assumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.110801 | DOI Listing |
ACS Sens
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.
View Article and Find Full Text PDFPLoS One
January 2025
Cancer Center, Kagoshima University Hospital, Kagoshima, Japan.
Kinase-related gene fusion and point mutations play pivotal roles as drivers in cancer, necessitating optimized, targeted therapy against these alterations. The efficacy of molecularly targeted therapeutics varies depending on the specific alteration, with great success reported for such therapeutics in the treatment of cancer with kinase fusion proteins. However, the involvement of actionable alterations in solid tumors, especially regarding kinase fusions, remains unclear.
View Article and Find Full Text PDFBiomarkers
January 2025
Hacettepe University, Faculty of Medicine, Deparment of Medical Oncology, Ankara, Turkey.
Background: Dynamins are defined as a group of molecules with GTPase activity that play a role in the formation of endocytic vesicles and Golgi apparatus. Among them, DNM3 has gained recognition in oncology for its tumor suppressor role. Based on this, the aim of this study is to investigate the effects of the DNM3 gene in patients diagnosed with pancreatic cancer using bioinformatics databases.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Umeå University, Umeå SE-901 87, Sweden.
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!