Photorespiration (PR) greatly reduces net carbon assimilation in trees (by c. 25%), but has received recent attention particular for its potential role in stress-signaling through the accumulation of hydrogen peroxide (H2O2), a stress signaling agent. Despite an increasing frequency of drought and heat events affecting forests worldwide, little is known about how concurrent abiotic stressors may interact to affect PR and subsequent H2O2 accumulation in trees. Here, we sought to identify how drought and a compounded one-day heat treatment individually and interactively affect PR (determined under variable O2) in Abies alba Mill. seedlings. Additionally, we quantified foliar H2O2 accumulation and enzymatic scavenging via peroxidase in relation to PR rates. We found drought stress to slightly increase PR (+5.2%) during mild-drought (12 days, Ψmd = -0.85 MPa), but ultimately to decrease PR (-13.6%) during severe-drought (26 days, Ψmd = -1.70 MPa) compared to the control, corresponding to increasing non-stomatal limitations of photosynthesis (i.e., decreased electron transport rate). The response of PR to heat stress was dependent on soil water availability as heat stress increased PR in control seedlings (+37.8%), but not in drought-stressed seedlings. Decreased PR during severe-drought corresponded to ~2x lower foliar H2O2 compared to the control. Despite increased PR under heat stress in control seedlings, foliar H2O2 decreased to near-zero likely due to enhanced scavenging as observed in ~2x greater peroxidase activity. Our results demonstrate that carbon loss to PR during drought stress can be highly dynamic, depending on the severity of soil dehydration. Additionally, increased PR under abiotic stress does not necessarily lead to accumulated H2O2, as tight regulation by scavenging enzymes instead minimize oxidative stress, reducing stress-signaling potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpae126 | DOI Listing |
PLoS One
December 2024
The First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China.
Objective: In this retrospective analysis, we explored the clinical characteristics and risk factors of secondary infections in patients with severe heatstroke with the aim to gain epidemiological insights and identify risk factors for secondary infections.
Method: The study included 129 patients with severe heatstroke admitted to the General Hospital of the Southern Theater Command of the PLA between January 1, 2011, and December 31, 2021. Patients were divided into an infection group (n = 24) and a non-infection group (n = 105) based on infection occurrence within 48 h of intensive care unit (ICU) admission.
PLoS One
December 2024
CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Vila do Conde, Portugal.
Thermoregulating ectotherms may resort to different external heat sources to modulate their body temperature through an array of behavioural and physiological adaptations which modulate heat exchange with the environment and its distribution across the animal's body. Even small-bodied animals are capable of fine control over such rates and the subsequent re-allocation of heat across the body. Such thermal exchanges with the environment usually happen through two non-mutually exclusive modes: heliothermy (radiant heat gain from the sun) or thigmothermy (heat gained or lost via conduction).
View Article and Find Full Text PDFPLoS Genet
December 2024
Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America.
Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Warsaw, Poland.
Introduction: The rapid growth of flexible and wearable electronics has created a need for materials that offer both mechanical durability and high conductivity. Textile electronics, which integrate electronic pathways into fabrics, are pivotal in this field but face challenges in maintaining stable electrical performance under mechanical strain. This study develops highly stretchable silver multi-walled carbon nanotube (Ag-MWCNT) composites, tailored for screen printing and heat-transfer methods, to address these challenges.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.
As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!