Personalized medicine tailors treatments and dosages based on a patient's unique characteristics, particularly its genetic profile. Over the decades, stratified research and clinical trials have uncovered crucial drug-related information-such as dosage, effectiveness, and side effects-affecting specific individuals with particular genetic backgrounds. This genetic-specific knowledge, characterized by complex multirelationships and conditions, cannot be adequately represented or stored in conventional knowledge systems. To address these challenges, we developed CPMKG, a condition-based platform that enables comprehensive knowledge representation. Through information extraction and meticulous curation, we compiled 307 614 knowledge entries, encompassing thousands of drugs, diseases, phenotypes (complications/side effects), genes, and genomic variations across four key categories: drug side effects, drug sensitivity, drug mechanisms, and drug indications. CPMKG facilitates drug-centric exploration and enables condition-based multiknowledge inference, accelerating knowledge discovery through three pivotal applications. To enhance user experience, we seamlessly integrated a sophisticated large language model that provides textual interpretations for each subgraph, bridging the gap between structured graphs and language expressions. With its comprehensive knowledge graph and user-centric applications, CPMKG serves as a valuable resource for clinical research, offering drug information tailored to personalized genetic profiles, syndromes, and phenotypes. Database URL: https://www.biosino.org/cpmkg/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429523 | PMC |
http://dx.doi.org/10.1093/database/baae102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!