Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) and plays a crucial role in neurological diseases. The process involves a series of steps, including NSC proliferation, migration and differentiation, which are regulated by multiple pathways such as neurotrophic Trk and fibroblast growth factor receptors (FGFR) signalling. Despite the discovery of numerous compounds capable of modulating individual stages of neurogenesis, it remains challenging to identify an agent that can regulate multiple cellular processes of neurogenesis. Here, through screening of bioactive compounds in dietary functional foods, we identified a flavonoid chrysin that not only enhanced the human NSCs proliferation but also facilitated neuronal differentiation and neurite outgrowth. Further mechanistic study revealed the effect of chrysin was attenuated by inhibition of neurotrophic tropomyosin receptor kinase-B (TrkB) receptor. Consistently, chrysin activated TrkB and downstream ERK1/2 and AKT. Intriguingly, we found that the effect of chrysin was also reduced by FGFR1 blockade. Moreover, extended treatment of chrysin enhanced levels of brain-derived neurotrophic factor, as well as FGF1 and FGF8. Finally, chrysin was found to promote neurogenesis in human cerebral organoids by increasing the organoid expansion and folding, which was also mediated by TrkB and FGFR1 signalling. To conclude, our study indicates that activating both TrkB and FGFR1 signalling could be a promising avenue for therapeutic interventions in neurological diseases, and chrysin appears to be a potential candidate for the development of such treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cpr.13732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!