Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference (Ref) image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single Ref image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require an Ref image at the inference phase, thereby becoming invulnerable to the selection of the Ref image. Both experimental and visual results show that LTGNet has competitive performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code is available at https://github.com/RYY0722/LTGNet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2024.3456483 | DOI Listing |
Sensors (Basel)
December 2024
College of Science & Technology, Ningbo University, Ningbo 315300, China.
Artif Intell Med
December 2024
School of Computer Science and Engineering, UNSW, Sydney, Australia.
Accurate segmentation of skin lesions within dermoscopic images plays a crucial role in the timely identification of skin cancer for computer-aided diagnosis on mobile platforms. However, varying shapes of the lesions, lack of defined edges, and the presence of obstructions such as hair strands and marker colours make this challenge more complex. Additionally, skin lesions often exhibit subtle variations in texture and colour that are difficult to differentiate from surrounding healthy skin, necessitating models that can capture both fine-grained details and broader contextual information.
View Article and Find Full Text PDFiScience
October 2024
Beijing Railway Signal Co., Ltd., Daxing, Beijing 102613, China.
IEEE Trans Neural Netw Learn Syst
September 2024
Optical coherence tomography angiography (OCTA) can visualize retinal microvasculature and is important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases. However, the resolution of optical coherence tomography (OCT) angiograms inevitably decreases when increasing the field-of-view (FOV) given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
June 2024
Generalizing face anti-spoofing (FAS) models to unseen distributions is challenging due to domain shifts. Previous domain generalization (DG) based FAS methods focus on learning invariant features across domains in the spatial space, which may be ineffective in detecting subtle spoof patterns. In this paper, we propose a novel approach called Frequency Space Disentanglement and Augmentation (FSDA) for generalizable FAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!