Medical image segmentation has seen great progress in recent years, largely due to the development of deep neural networks. However, unlike in computer vision, high-quality clinical data is relatively scarce, and the annotation process is often a burden for clinicians. As a result, the scarcity of medical data limits the performance of existing medical image segmentation models. In this paper, we propose a novel framework that integrates eye tracking information from experienced radiologists during the screening process to improve the performance of deep neural networks with limited data. Our approach, a grouped hierarchical network, guides the network to learn from its faults by using gaze information as weak supervision. We demonstrate the effectiveness of our framework on mammogram images, particularly for handling segmentation classes with large scale differences.We evaluate the impact of gaze information on medical image segmentation tasks and show that our method achieves better segmentation performance compared to state-of-the-art models. A robustness study is conducted to investigate the influence of distraction or inaccuracies in gaze collection. We also develop a convenient system for collecting gaze data without interrupting the normal clinical workflow. Our work offers novel insights into the potential benefits of integrating gaze information into medical image segmentation tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3468404DOI Listing

Publication Analysis

Top Keywords

medical image
16
image segmentation
16
eye tracking
8
mammogram images
8
deep neural
8
neural networks
8
gaze medical
8
segmentation tasks
8
segmentation
7
medical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!