Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra, the etiology of which remains unclear. Studies have shown that neuroinflammation and oxidative stress (OS) play an important role in neuronal damage in patients with PD. Disturbances in the gut microbiota influence neuroinflammation and OS through the microbiota-gut-brain axis. Ginkgolide C (GC), a traditional Chinese medicine extracted from the leaves of , has been reported to exhibit anti-inflammatory effects and the ability to modulate intestinal microbial composition. However, the potential of GC to positively impact PD by modulating the gut microbiota remains unexplored. This study aimed to explore the effects of GC on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and elucidate its underlying mechanisms. Our findings elucidated that GC treatment significantly ameliorates behavioral deficits as well as pathological damage via restoring gut microbial homeostasis to downgrade OS and neuroinflammation in MPTP-induced PD mice. Mechanistically, GC treatment exerts antioxidant effects via activating the AKT/Nrf2/HO-1 pathway in MPP-exposed SN4741 neuronal cells and significantly downregulates the expression of inflammatory mediators via regulating NF-κB and MAPK signaling in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Overall, our study demonstrates that GC administration alleviates MPTP-induced neurodegeneration via rebuilding gut microbial homeostasis to inhibit OS and neuroinflammation in mice, indicating that GC might serve as a promising candidate medicine for PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c03783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!