Parkinson's disease (PD) is the second most prevailing degenerative disease that deals with dopaminergic neuronal loss and deficiency of dopamine in SNpc and striatum. Manifestations primarily include motor symptoms like tremor, rigidity, and akinesia/dyskinesia along with some nonmotor symptoms like GI and olfactory dysfunction. α-Synuclein pathogenesis is the major cause behind progression of PD; however there are many underlying molecular mechanisms behind the pathophysiology of PD. Sirtuins are small molecular deacetylases that have an imperative role in pathology of such neurodegenerative disorders like PD. Sirtuins are majorly classified according to their location; nuclear (SIRT1,7,6), mitochondrial sirtuins (SIRT3-5), and cytosolic (SIRT2). These actively take part in pathological development and possess independent actions. In this review, the role of nuclear sirtuins is individualistically explored for better understanding of PD pathology and development of advanced therapeutics targeting sirtuins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.4c00507 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!