The thia-Paternò-Büchi reaction represents a straightforward approach to build thietane cores. Unfortunately, the significant instability of thiocarbonyls, particularly thioketones and thioaldehydes, has hitherto rendered this photochemical [2+2]-cycloaddition underexploited. To address this limitation, we report herein a visible-light photochemical domino reaction including: the in situ generation of thiocarbonyls though a Norrish type II fragmentation of pyrenacyl sulfides, and the aforementioned thia-Paternò-Büchi reaction with various non-volatile electron-rich alkenes. The highly efficient synthesis of a wide range of unprecedented thietanes from intrinsically highly unstable thiocarbonyls, such as thioaldehydes and aliphatic thioketones, was made possible by the multitasking capability of pyrenacyl sulfides as a source of thiocarbonyl substrates and as precursors of 1-acetylpyrene, which acts as the photocatalyst for the thia-Paternò-Büchi reaction. The photosensitizer properties of the latter have been experimentally established and a triplet-triplet Dexter energy transfer based mechanism is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412602DOI Listing

Publication Analysis

Top Keywords

thia-paternò-büchi reaction
16
situ generation
8
photocatalyst thia-paternò-büchi
8
pyrenacyl sulfides
8
reaction
5
generation 1-acetylpyrene
4
1-acetylpyrene visible-light
4
visible-light photocatalyst
4
thia-paternò-büchi
4
reaction thia-paternò-büchi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!