, a commercially popular crustacean species within the Chinese context, is recognized for its exceptional nutritional composition and palatability. There are significant differences in growth between male and female . Herein, transcriptomics was used to determine the hepatopancreas transcriptome differences between sex-related size differences in . We identified 974 differentially expressed genes (DEGs) between the SHE (female) and BHE (male) groups, which were validated using RT-qPCR. The genes encoding matrix metalloproteinase-9 (), Ribosome-binding protein 1 (), Aly/REF export factor 2, and hematological and neurological expressed 1 () may play a role in modulating the sex-related size differences observed in . Clusters of orthologous groups and gene ontology functional analysis demonstrated that the DEGs for sex-related size in were associated with various biological functions. The Kyoto Encyclopedia of Genes and Genomes pathways analysis demonstrated that upregulated DEGs were mainly enriched in lysine biosynthesis, tryptophan metabolism, and lysine degradation pathways, whereas the downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, retinol metabolism, and drug metabolism-cytochrome P450 pathways. The results indicated the molecular mechanism underlying the sex-related size differences and identified key genes. This data will be invaluable to support explanations of individual differences between male and female prawns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435631 | PMC |
http://dx.doi.org/10.3390/vetsci11090445 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!