Metasurface absorbers (MSAs) are of significant importance in a wide range of applications, such as in the field of stealth technology. Nevertheless, conventional designs demonstrate limited flexible characteristics and a lack of transparency, hence constraining their suitability for certain radar stealth applications. This study introduces a novel MSA operating in the broad microwave range, which exhibits both optical transparency and flexibility. The structure consists of a flexible substrate made of polyvinyl chloride (PVC), along with a resistive film composed of indium tin oxide (ITO). The proposed structure exhibits the ability to effectively absorb over 90% of the energy carried by incident electromagnetic (EM) waves across the frequency range of 9.85-41.76 GHz within an angular range of 0° to 60°. In addition, to assess the efficacy of the absorption performance, an examination of the radar cross-section (RCS) characteristics is conducted. The results indicate a reduction of over 10 dB across the aforementioned broad frequency spectrum, regardless of the central angle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434834 | PMC |
http://dx.doi.org/10.3390/nano14181507 | DOI Listing |
Phys Rev Lett
December 2024
Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.
Recent studies have attracted widespread attention on magnet-superconductor hybrid systems with emergent topological superconductivity. Here, we present the Floquet engineering of realistic two-dimensional topological nodal-point superconductors that are composed of antiferromagnetic monolayers in proximity to an s-wave superconductor. We show that Floquet chiral topological superconductivity arises due to light-induced breaking of the effective time-reversal symmetry.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China.
Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.
View Article and Find Full Text PDFSci Rep
January 2025
Photonics Research Centre, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!