Olivine-like NaFePO glasses and nanocomposites are promising materials for cathodes in sodium batteries. Our previous studies focused on the preparation of NaFePO glass, transforming it into a nanocomposite using high-pressure-high-temperature treatment, and comparing both materials' structural, thermal, and DC electric conductivity. This work focuses on specific features of AC electric conductivity, containing messages on the dynamics of translational processes. Conductivity spectra measured at various temperatures are scaled by apparent DC conductivity and plotted against frequency scaled by DC conductivity and temperature in a so-called representation. Both glass and nanocomposite conductivity spectra are used to test the (effective) exponent using Jonscher's scaling law. In both materials, the values of exponent range from 0.3 to 0.9, with different relation to temperature. It corresponds to the electronic conduction mechanism change from low-temperature Mott's variable range hopping (between Fe/Fe centers) to phonon-assisted hopping, which was suggested by previous DC measurements. Following the pressure treatment, AC conductivity activation energies were reduced from EAC≈0.40 eV for glass to EAC≈0.18 eV for nanocomposite and are lower than their DC counterpart, following a typical empirical relation with the value of the exponent. While pressure treatment leads to a 2-3-orders-of-magnitude rise in the AC and apparent DC conductivity due to the reduced distance between the hopping centers, a nonmonotonic relation of AC power exponent and temperature is observed. It occurs due to the disturbance of polaron interactions with Na mobile ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434541PMC
http://dx.doi.org/10.3390/nano14181492DOI Listing

Publication Analysis

Top Keywords

electric conductivity
12
conductivity
8
conductivity spectra
8
apparent conductivity
8
pressure treatment
8
conductivity high
4
high pressure
4
pressure high
4
temperature
4
high temperature
4

Similar Publications

Bioelectrical Impedance Vector Analysis (BIVA) is a valuable tool for evaluating hydration and body composition, but its application in subacute post-stroke patients remains unexplored. This study aimed to fill this gap by analyzing BIVA in a cohort of 87 subacute post-stroke patients (42 women, mean age 69 ± 12) undergoing rehabilitation. At admission (T0), diagnosis of malnutrition with GLIM criteria and of sarcopenia with EWGSOP2 was done, and patients were analyzed with BIVA.

View Article and Find Full Text PDF

Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.

Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.

View Article and Find Full Text PDF

This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.

View Article and Find Full Text PDF

Qualitative Research of Composite Graphene Membranes Using the Electric Mode in SEM and AFM.

Materials (Basel)

January 2025

Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland.

The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.

View Article and Find Full Text PDF

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!