Photovoltage-Driven Photoconductor Based on Horizontal -- Junction.

Nanomaterials (Basel)

School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

Published: September 2024

AI Article Synopsis

  • * The proposed horizontal junction-based photoconductor improves performance by using an n-region for charge transport that minimizes dark current and enhances photoconductivity.
  • * This device design balances responsivity, dark current, and response speed, presenting a novel method for creating high-performance photodetectors with both traditional and new nanomaterials.

Article Abstract

The photoconductive gain theory demonstrates that the photoconductive gain is related to the ratio of carrier lifetime to carrier transit time. Theoretically, to achieve higher gain, one can either prolong the carrier lifetime or select materials with high mobility to shorten the transit time. However, the former slows the response speed of the device, while the latter increases the dark current and degrades device sensitivity. To address this challenge, a horizontal -- junction-based photoconductor is proposed in this work. This device utilizes the n-region as the charge transport channel, with the charge transport direction perpendicular to the -- junction. This design offers two advantages: (i) the channel is depleted by the space charge layer generated by the and regions, enabling the device to maintain a low dark current. (ii) The photovoltage generated in the - junction upon light absorption can compress the space charge layer and expand the conductive path in the -region, enabling the device to achieve high gain and responsivity without relying on long carrier lifetimes. By adopting this device structure design, a balance between responsivity, dark current, and response speed is achieved, offering a new approach to designing high-performance photodetectors based on both traditional materials and emerging nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435119PMC
http://dx.doi.org/10.3390/nano14181483DOI Listing

Publication Analysis

Top Keywords

dark current
12
photoconductive gain
8
carrier lifetime
8
transit time
8
response speed
8
charge transport
8
space charge
8
charge layer
8
enabling device
8
device
6

Similar Publications

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

Effects of the Interface Properties on the Performance of UV-C Photoresistors: Gallium Oxide as Case Study.

Sensors (Basel)

January 2025

Department of Mathematical, Physical and Computer Sciences, University of Parma, Viale delle Scienze 7/A, 43124 Parma, Italy.

Electrical contacts are of the greatest importance as they decisively contribute to the overall performance of photoresistors. Undoped κ-GaO is an ideal material for photoresistors with high performance in the UV-C spectral region thanks to its intrinsic solar blindness and extremely low dark current. The quality assessment of the contact/κ-GaO interface is therefore of paramount importance.

View Article and Find Full Text PDF

Hidden Urban Biodiversity: A New Species of the Genus Mittleman, 1950 (Squamata: Scincidae) from Chengdu, Sichuan Province, Southwest China.

Animals (Basel)

January 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.

The genus Mittleman, 1950, belonging to the family Scincidae, exhibits considerable morphological convergence, complicating species delimitation and resulting in underestimated diversity. Currently, 41 species are formally recognized in this genus, although this figure likely underestimates its true richness. In this study, a new species of the genus , , is described from urban and suburban areas of Chengdu, Sichuan Province, Southwest China.

View Article and Find Full Text PDF

Food safety is gaining increasing attention worldwide. Currently, low-density organic foreign objects such as insects are extremely challenging to detect using conventional metal detectors and X-ray inspection systems. This study aimed to develop a visible-near-infrared single-pixel imaging (Vis-NIR-SPI) method to detect small insects inside food.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!