Convenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) cation and the silver shell of the nanoparticles, which causes a severe transformation of the nanomaterial structure, reverting it to pristine GNSs. This system works by simultaneously monitoring changes in the Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) spectra as a function of added Fe(III). The proposed sensing system is able to detect the Fe(III) cation in the 1.0 × 10-1.5 × 10 M range, and its selectivity of the GNS@Ag@MMC sensor toward iron has been verified monitoring the LSPR and the SERS response to other cations with a clear selectivity toward Fe(III).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11434494PMC
http://dx.doi.org/10.3390/nano14181467DOI Listing

Publication Analysis

Top Keywords

localized surface
8
surface plasmon
8
plasmon resonance
8
raman spectroscopy
8
sensing system
8
feiii cation
8
feiii
6
dual-mode sensing
4
sensing feiii
4
feiii based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!